Whistler Server

1Whistler Server

Overview
2
Architecture
2
Business Case
2
Platform
2
Server
2
Client
3
Data Provided
3
TOS & L1
3
Level 2
3
External Files
3
Daily Candles
4
Intraday Candles
4
Scripting
5
Language
5
Power
5
Ease of Use
5
Ease of Implementation
5
Libraries
5
Multi-Threading
6
Output
6
Client
6
API
7
Client to Server
7
Server to Client
7
Delivery
7
History
8
Management
8
Accounting
8
Limited Permissions
8
Programming Interface
8

Overview
This is a proposal to implement an alert server which is more customizable than Trade-Ideas’ current servers.

Architecture
The current TI architecture involves servers which are preprogrammed in advance. They don’t know or care who is attached. A different set of servers will filter through the data, and the client software makes it fast and easy for a user to change these filters.

The proposed architecture will use a minimalist approach to make it more agile. Different groups of people will have their own servers. The only way to change something is to change the code. But it will be easy to change the code. There will be a scripting language to write the alert definitions. And with fewer features, and fewer users on each server, there is less holding you back from making a change.
Business Case

This would be similar to functionality offered by some competitors. We have found that some of these people have trouble expanding their business. We would have to avoid those pit falls. This would have to be a more expensive product than we offer now, to make it worth while. We know that this architecture does not scale well, so we need to consider several customers each with their own servers.

This could fill in some gaps in our current offing, or offer a product that is very similar but more powerful. We would continue to offer normal TI as a mass market product. When people ask us for specific things that we don’t have, we could have alternatives that they do not offer. People with a group of users and a lot of specific needs could run their own Whistler server and program it themselves. At an intermediate level, we could have one or more Whistler servers of our own which are made for small requests for individual users and/or testing new strategies before sending them to the existing servers.

Ideally other people could get the Whistler server from us, and then resell to individual users. This could be a business in itself. Or it could be a way to offset the costs of a Whistler server that someone needed for themselves.

Platform

Server

These servers would all run on the Linux platform. This is more appropriate for a server product than MS Windows, especially for a computer sitting in a co-lo facility. This will also allow us to reuse existing code.

The primary output is a simple datafeed. This could be picked up by clients built on any number of platforms.

Client
The data feed can be read by custom clients on any number of platforms. See the “output” section below for more details.
Data Provided
The current architecture provides a number of complicated internal data products. This is aimed primarily at performance. For example, if two different formulas both use the 20 period 5 minute SMA, we go out of our way to compute that only once. Unfortunately, this adds significantly to the complication of the server. This often causes me to stop and think about the best way to use the data, and may be incomprehensible to someone who didn’t build the system from the ground up.

The Whistler server will provide limited data to the script writer. This seems limited compared to what is available in the existing TI servers, but much of what is stripped out is custom work that no one else would expect. Essentially, we are stripping out a lot of our custom stuff to make the standard stuff easier to use.
TOS & L1

The servers will offer simple TOS and L1 data. A new event will fire any time one of these fields changes. This includes things like the best bid size, best ask price, most recent print, etc.

TOS and L1 are split into two separate events. The details of the split are somewhat arbitrary. The important thing is to know when every print occurs, even if two consecutive prints have the same price. This is different from most data fields.
A very limited amount of options data is available and mixed in with the L1 data stream.

Level 2
We do not plan to make use of Level 2 data. Although certainly possible, that adds a huge amount of data. A customer might have to buy a lot more servers to handle the same number of stocks. This type of analysis makes more sense for a small number of stocks and a client application.
External Files

It will be easy to read from CSV files. This allows external data to come from any number of sources. The existing TI servers have a separate process that runs every night to generate CSV files. Each Whistler server could have a similar setup.

The existing TI servers use this primarily for performance reasons. We can request a lot of historical data, and perform computations that never change during the day. Performance will be more important with a scripted version of the software.
For simplicity and performance, we only read these files in once. The existing servers had a way to notify the formulas when a CSV file changed. This could be treated as streaming data, like the L1 or TOS. That made things much more complicated and we never benefited from it. We changed the server to read all files once, when we first start.
Daily Candles
There will be some way to access daily candles. These can look a lot like intraday candles, and can use the same formulas. I.e. you only have to write RSI once. This adds significant flexibly and convenience over what we do now. Currently the daily stuff and the intra data stuff are split up for performance reasons.
Intraday Candles
The current servers have several different notions of intraday candles used in different places. We are only planning to make one available to the Whistler server. This one seems most consistent with standard technical analysis techniques. However, there is certainly no consensus on what that is.

All candles end at N minute boundaries, where N is an integer. So far we’ve avoided certain numbers like 60 minutes, because those cases are handled differently on different charts. For a 60 minute chart, is the first bar after the open 30 minutes, or is the last bar before the close only 30 minutes.

These candles only track normal trades. They avoid pre-market activity. They do not count late prints.

We report an event each time the clock tells us to. We can’t get the close of a candle from a print. We store the price of the last print, but an event happens according to the clock. Actually, it’s not quite that simple. We watch the stream of prints for all stocks to make sure that there is not a problem caused by a delay in the data, or by the wrong time on the server. If there were a 5 second delay in the data (and that’s far more extreme than we would ever expect on a production system) then the new candle event would come 5 seconds after the time actually changed. There is no perfect solution with late prints and the like, but this has consistently worked well for us.

If there is an empty candle, we delete all history for that stock and start fresh when new prints come in. There is no consistency in the way that different charting packages handle the case of missing candles. This case is not discussed at all in any book that I’ve seen. This, too, has worked well for us.

The new candle event is sent to the scripting language in a consistent way. If you have a formula that compares data from different timeframes, or different stocks, you will see consistent results for all of them. In a charting package it’s not a big deal if one of your charts updates a few milliseconds before another. But an alerting application could easily get confused and could report on that situation before it was fixed.
Previous days’ data will be available with some caveats. You have to do some preparation in advance. If you ask for a new stock or a new time frame, etc., in the middle of the day, that stock data will start from scratch at that time. If you are watching a stock consistently, this will not be a problem.

There are some other special requirements to make candles work. For example, if you had a server which was only watching stocks that barely traded, that would confused our time synchronization routines. However, all of these special cases seem minor, and acceptable for expected use.
Scripting
We will provide the framework for the server. The customer will write scripts to define the alerts.

Language

The plan is to us TCL for the scripting language.

Power

TCL is a fully functional programming language that can do any number of things. We will add a few specific functions and libraries to help with the relevant tasks.

The alternative would be to start with a very limited set of instructions and add more as we needed them. That approach might make a simpler system to start with because you could do less. But over time we’d have to add more and more as people needed it. And the result could not be as nice as if we had started with a complete programming language.
Ease of Use

TCL is a scripting language. It contains all the nice things you’d expect from a scripting language. It provides automatic garbage collation. It will notice if you try to read off the end of an array. Errors are all turned into exceptions. If there is a problem, we can catch it and print out a report in the log, rather than crashing the server.

TCL works well in a number of environments, including M.S. windows. It would be easy for us to set up a simulator that could run on any platform to help develop strategies.

Ease of Implementation

TCL was chosen for a number of reasons. In addition to what it offers our customers, it will be easy for us to add this to our current architecture. It was specifically made to be easy to add to an application.
And I’ve had a lot of experience with TCL in the past. I don’t expect any surprises here. It’s always worked well. For a scripting language it is unusually fast.

Libraries

We will provide some libraries, written in TCL for some common functions and formulas. RSI and moving averages are two examples.

We will provide these for many reasons. One is to provide sample code to help the person writing the formulas. Another is to help us test this product when we develop it. We need to write formulas and alerts before any customer does. These same test files will serve as examples.

We will make no attempt to be complete in our list of formulas. We couldn’t if we tried. However, whenever we write a formula which could be useful to other users, we might as well add that to the list of examples.
Multi-Threading
An open question is how many threads / processes / machines will be involved in one server.

Ideally only one process on one machine will handle everything, and all of the scripted code will run in only one thread. That is the simplest solution. That makes the scripting and administration much simpler.

Having only one thread and only one process limits our ability to take advantage of multi-core machines. But it allows the script writer to have global variables that can be shared by multiple pieces of code.

Our normal servers are spread out on multiple processes on multiple machines. We do that in large part for redundancy and resilience. If something goes down, the whole thing does not go down. The Whistler server will not offer that level of redundancy. We purposely buy several small machines. Presumably one large machine could do a decent amount of work for all the stocks a user wanted to watch.

Limiting the whistler server to one machine will reduce the data costs / exchange fees.

Accounting is another issue. If there is only one process, it will be easier for us to keep track of the users. See details below about what we need to do and why.
Output

Client

We will need to provide a simple client which can display the data. This will not be a “slick” tool like TI Pro with hundreds of options. Instead will be a bare bones display. Source code will be available, in case someone needs to customize it.

TCL would be the ideal language for this client. It is free, so we can distribute to anyone, and they can modify the source. And the same person who is customizing the alert formulas may also be customizing the client. And TCL runs on a variety of platforms.

We will make no attempt to replace a normal trading client. We will not offer charts, a montage window, a market view, etc. We assume people already have that.

Some charting data will be available, but it is aimed at developers. For example, you can dump the state of the candle chart with an alert. If you didn’t get the alert you expected, this will help you differentiate between bad data and an error in your formula.

API

We will provide a simple socket with a very simple protocol for listening to the data. There will be no code that the user must include in his program. However, he can look at our client for sample code.

The following samples are only offered to give an idea of the general shape of the feed. This is not a finished interface specification.

Client to Server

command=login&username=philip&password=mo+money<CR><LF>
command=start&strategy=RSI+15<CR><LF>
Server to Client

This example is written in XML because that is so widely used. If the client and server are both TCL, we could use a native TCL format, instead.

<ALERT STRATEGY=“RSI 15” SYMBOL=“DELL”><STANDARD PRICE=“15.00” ASK=… /><CUSTOM VOLATILITY=“2.3452”></ALERT><CR><LF>
<ALERT … </ALERT><CR><LF>
Notice the “standard” section which contains general TOS/L1 information about the stock at the time of the report. This would be the same for all alerts. The “Custom” section contains information from the actual formula. It could be anything.
Delivery

The client / server connection will be a simple TCP/IP socket.

There will be no special considerations for special firewalls. If the end user’s firewall does not allow this, the user needs to talk to his system administrator. TI Pro offers various tunneling and proxy options. Those are not appropriate to this type of tool and we will not offer them for Whistler.

The protocol does not include compression or encryption. There are plenty of 3rd party tools which can handle that. It would be easy enough to use stunnel to set up encryption and compression without modifying the client or the server.

We will have some method of limiting the backlog, the number of alerts that are in the queue and have not been delivered to him. This is required to keep the server healthy. Each server will have its own administrator who can tweak these parameters.

History
The server does not store any history. If a client is not connected, he will not see the alerts. There is certainly no OddsMaker, because that is built on top of history.

All alerts are pushed to the client the instant that they are available. The client does not have to poll.

Management

Accounting

We will need a way to know who is connected, and who has permissions to be connected. We will have a seat fee, in addition to the fees for the server. And, even if we didn’t want the seat fee, we would need to collect fees for the exchanges. Even if we paid that ourselves, we’d need to take care of the accounting.
Limited Permissions

Each alert can be limited so that only certain users can see it. Use case: A broker gets one Whistler server to handle numerous clients. A single client will request a particular formula. He doesn’t want anyone else to know the results of that formula except a small number of his friends.
Programming Interface

We assume the programmer will also be a system administrator. The end users will not have a way to directly submit a new program.
For the most part, adding a new alert will involve copying a new file to the server, or editing it in place. The programmer / administrator will use standard UNIX tools for that. Examples include ftp and emacs.

There will be some ability to change alerts while the server is running. However, this is not intended to be a desktop program and it will not have a pretty GUI. There might be a simple command line utility to tell the server to reload the script files.

