1) Compatibility matrix for display modes and alert modes (realtime/history):

	
	Real-Time Alerts
	History Alerts

	Normal Mode
	+
	+

	Trader’s Paradise
	+
	-

	Sortable Mode
	+
	+

We have specific requirements for everything that has a + next to it. There is no specific requirement for the -.

Here are a few possibilities:

· Disable the history option in Trader’s Paradise mode.

· If someone selects history in Trader’s Paradise mode, we automatically switch them to normal mode.

· If someone selects history in Trader’s Paradise mode, we display history the way that we would in normal mode, but we still list the mode as trader’s paradise mode. So if they select the real-time option again, they can return to the previous state. (With the previous option, they would have to do two things to return to the previous state.)

I’m leaning toward the first option just because it seems like the least work. I’m not completely sure, that’s why I’m thinking out loud.
2) Am I right that we should allow sorting only by the following fields:
	Field Name
	Sortable (Y/N)

	Icon
	N

	Time
	Y

	Symbol
	Y

	Description
	Y

	Quality
	Y

	Relative Volume
	Y

	Age
	N --
This is true with one caveat. Age and time both display the same data, but in different ways. If you have a list of items on a menu, do not list age. However, if we allow the user to sort by clicking on a column, or something like that, then they can sort by age. (I don’t remember if that’s in the spec for 2.1. If it’s not, I’m sure we’ll add it in a future version.)

	#
	Y

	Range
	Y – Internally, range is just a number. Like Relative volume and quality it might be NAN in which case we display nothing.

	Weekly Chart
	N

	Daily Chart
	N

	
	

	
	

And we are not going to support sorting by several fields (i.e. have primary and secondary sort keys)?

For now, lets just support one key.
The primary concern here is the GUI. For now we will have a very simple GUI, like a pop-up menu. You will notice that the next version after 2.1 will have a nicer GUI for configuring things like this. At that time we will probably add the ability to sort by more than one key. Think about this as you decide how to save the configuration.
By the way, I like this separation. I want to add a lot of functionality now. After the functionality is stable, then we’ll clean up the GUI. I can see us spending as much time getting the GUI perfect as we’ve spent on the functionality.

3) As far as I understand, we need to implement additional data structure, that exposes interface of TAlertList class, and adds additional functions for sorting and quick lookup of items by “Symbol” field. Probably it’s a good idea to extract interface of TAlertList into abstract class?
I was thinking the same thing. Maybe it’s time to move TAlertList and the two new classes into a new file.

 TAlertList will be one implementation of this abstract class, and we will create our new implementation, say TSortableAlertList?

Another possible way is to keep the TAlertList as is, and add additional class, TAlertListView to implement data source / data view paradigm. TAlertList will be responsible for storing data, while TAlertListView will work as a moderator between TAlertList and TAlertGrid and present data to TAlertGrid using required sort order.
In my head it seemed cleaner to have two separate classes, rather than one big class. It might make sense to add an additional class to help decide which of these classes you need, and to automatically create and destroy the others as required. I’m not sure.
Here’s an alternative. Just two methods of TAlertList like this:

 Class Procedure ConvertToSortable(Var TAlertList List);

 Class Procedure ConvertToLinear(Var TAlertList List);

These would compare the current type of the list to the desired type of list. If necessary it would delete the old list and create a new list of the proper type. If the type was already correct, it would do nothing. It would probably even deal with the initial condition when List is Nil.

That would move some code out of the TAlertGrid code, and it wouldn’t add much new code. This is similar to what you suggested, but we are creating fewer classes and objects.
4) Am I right that number of rows (when direction is up or down) or columns (when direction is left or right) in Trader’s Paradise mode is equal to number of visible rows(columns) and thus depend on the current size of alert window?
Correct.

 When alert window is resized by user, the number of rows (columns) should be changed (i.e. we should use TAlertGrid.VisibleRowCount/TAlertGrid.VisibleColCount?)
Correct.
I wasn’t very specific about what would happen at the instant that the user changed the size of the window. Do we clear the screen? Do we always start at the top? Do we just force the entire window to repaint itself (not just the newly exposed part) and accept whatever happens? Do whatever is easiest.
5) When the user switches between display modes, should we preserve previously displayed alerts and display them using new display mode or should we erase old alerts and start from empty alert list?
Again, I wasn’t specific in the requirements. Either option would be reasonable. Pick whatever is easiest.
I assumed that the Sortable mode would use one data structure and the other two modes would use a different data structure. I assumed that each time we changed data structures we’d start fresh. But we’d keep the data if we switched between normal mode and trader’s paradise mode.

I’m just guessing at what will be easy to implement. Feel free to ignore that last paragraph.
