1. Overview

This document contains requirements for version 1.9 of Trade-Ideas Pro application.
These requirements may be divided into four main groups:

1) Configurable sound support for alert actions;

2) Bug fixes and change requests of previous version

3) Multiple lists for external linking

4) Automatic updates support.
5) more added below.
These requirements and proposed technologies for their implementation are described below.

2. Sound Support For Alerts

Version 1.9 will introduce configurable sound support for alerts. The program will be able to play sound files in WAV format.

The new layout for Actions form will have necessary controls for sound setup. The proposed layout is as follows:

[image: image1.png]| @ iobal actions R =Tk}

[OnEachflet————
& Danathing

© Play sound Setup sound.
[Alert wavVolume B5 Lt 45 Right 55

€ Show Alet Window
© Sendto lrked windows

-Sendto nked windows |
© OnCick
& OnDoubleClick

==

Rationale: We’ll keep the Actions form compact enough and at the same time informs the user about current sound configuration using read-only edit (or label) control.

The sound setup contains three parameters:

1) The name of the sound file;

2) The playback volume (0 – 100%);

3) Balances on the left and right speaker (0 – 100%);

Note: The following expression is always true: Balance on the left + Balance on the right = 100%, i.e. when we’ll increase balance on the left speaker, balance on the right speaker is decreased accordingly.

The “Setup sound…” button is used to open the sound configuration dialog. Upon startup, the applications checks for presence of device for WAV playing by issuing Multimedia API call waveOutGetNumDevs(). If there is no necessary devices, the “Setup sound” button is disabled, and sound configuration is set to “<Default>”, that corresponds to the simple beep sound (as in previous versions of TI Pro).
The proposed layout for “Sound Setup” form is as follows:

[image: image2.png]Select sound il Balarce:

Play

The “Select sound file:” combo box is populated by searching for *.WAV files in the \Sound subdirectory of application main directory. Thus, the user may add new sounds just by copying sound files into \Sound directory. Additional sound formats may be added in the future (for example, MIDI). The balance and volume track bars are used to configure playback volume and balance.
“Select sound file” combo box always contains the “<Default>” item, which corresponds to the simple “beep” sound, used in the previous versions.
When the user pressed OK, the new configuration is stored and the text in the read-only edit box in the Actions form is updated.
When the user pressed OK in the Actions form, the sound configuration is applied and stored in the registry as a part of actions configuration. If the user pressed Cancel in the Actions form, the new sound configuration is not applied to actions, and not stored in registry.
To play sounds and control playback volume and balance, the program uses Microsoft Multimedia API, encapsulated by MMSystem.pas Delphi module.

The program manages sound playback using priority queue.
Each time an alert window gets data, and the user has requested a sound, that sound gets added to a queue. There is one global queue for all windows. If the same sound is already in the queue, the new request is ignored. Two sounds are treated the same if they have the same all three parameters (sound file name, volume, balance). A sound is removed from the queue immediately before it starts playing. The priority of the sound depends on the time that particular sound waits in the queue - the longer it has been since we've played a particular sound, the higher its priority. If two sounds in queue have the same priority calculated by wait time, then the first one added to the queue has the highest priority (FIFO concept).
The sound currently playing is never interrupted. The queue is checked only after previous sound has been played completely.
3. Bug fixes/change requests of previous versions

1. Bug fix - “Save window” function.

It is impossible to save the window which contains “illegal” characters in the window name – like “High/Low Ticker”. The window name is used to form the file name for the “Save window” function, but these characters (/, \, !, ?, <, >, | etc.) can not be used for file name. Implementation: change illegal characters in file name to “_” character.

2. Change – Actions window
a) When “Use Global Actions” option is selected for alert window, options inside “On Each Alert” and “Send to linked windows” group boxes should be disabled.

b) Actions window should act as a standard dialog window, i.e. prevent resizing and maximizing.

3. Change – Login window

Login window layout should be changed as follows:
[image: image3.png]Please logi

User Name: [EEIE T
Passward: [

==

CieateAccourt Activale Account Forgot My Password

Three hyperlinks should be added that are read from Settings.ini file. The default values are as follows:

Create Account - http://www.trade-ideas.com/CreateAccount.php
Activate Account - http://www.trade-ideas.com/ActivateAccount.html
Forgot My Password - http://www.trade-ideas.com/ForgottenPassword.html
There can be between 1 and 3 of these. (To make things easier for you, and still allow for decent formatting, there will never be less than 1 or more than 3). If there is only one, center it. If there are two, then left and right justify them. Three will look like the picture you provided above.

The visible names and the hyperlinks both come from settings.ini.
4. Multiple lists for external linking

I pulled this from our previous conversations. If I were to write a spec today, I’d probably make this simpler. For example, I might have a fixed number of connection windows. If any of this is particularly hard, let me know. These requirements are flexible.

You can have multiple configuration settings for the external linking feature. For example, a TI window can send every alert to some set of external windows. When you double click on an alert, the same TI window can send this alert to a different set of external windows. Different windows can point to different sets of external windows.

By default, there is one set of external windows called "MAIN LIST". By default, the software will act pretty much like it does now. But the user will have the option to create and use these additional lists.

You will create one Generic Connector #2 for each user set of windows. Each one will have a name that the user can type, view, or select from a combo box or similar GUI element. The GUI will allow the user to create more of these. Various alert windows can share these in any number of ways, as configured by the user.

You will have to use the new OCX. This is version 1.2; you've been using version 1.1. This contains a new property, AutoSave, which defaults to true. This contains a new method, ClearLinkedWindows().

The original OCX saved all of its state in the registry. It had to because the web client destroyed and recreated this control on a regular basis. The new version will optionally keep all of it's state in memory. That way you can use each one of these objects to represent a different set of external windows.

Each time you create one of these controls, you will first set AutoSave to false, then call ClearLinkedWindows(). At this point you will start with an empty control. The user will see this each time he restarts TI Pro.

The Global actions window always associates either a click or a double click with external linking. So we will need to store a name of a set of external windows. The default for this will be "MAIN LIST". If a user has not saved his settings since he upgraded to this version, a single or double click will be linked to "MAIN LIST". The user can change this to another name. If the user types "" as the list name, TI Pro will automatically change this to "MAIN LIST". When we save the layout, we will save the list name that the user changed.

The global actions window can also send all alerts to a window. If this option is selected, then we remember another list name. The user can change this, independently of the other one. The default is "MAIN LIST". If the user selects something other than "send to linked windows" and hits OK, then we will immediately forget the name that was associated with this list. If he selects "send to linked windows" again then we will restore the default value of "MAIN LIST"

Each alert window can also be associated with one or two lists. If the user selects "use global actions" then we do not save any list names. If the user selects "use the following custom action settings" then we remember the name of the list associated with "send to linked windows". If the user also sets "on each alert" to "send to linked windows" then we also remember the name of the list of windows associated with that option.

While TI Pro is running, we can always create more Generic Connector #2 controls, each one representing a new list with a new name. We never delete one of these. We never rename one of these.

When TI Pro exits, we only save the names, as described above. We don't save the state of the ActiveX control, or the contents of the list. We do not save any more list names than we have to.

When TI Pro starts, it only has one Generic Connector #2 control, which is named "MAIN WINDOW". Each time we load a saved window, from the layout or a TIA file, we might have to create a new Generic Connector #2. If this window names one or more lists that don't exist, then we create them on the fly. The user can also create more, at any time.

The requirements above are mostly firm. The GUI, below, might need some work. In particular, it should probably look similar to the way that we select a WAV file.

On the actions dialog box we can ask for 0, 1 or 2 list names. We use a combo box to ask for the list name. We disable the combo box if we don't need that particular list name (and we don't plan to remember that list name). One combo box is right next to the "send to linked windows" radio button. A second one is associated with the "Send to linked windows" group at the bottom. Before the user hits OK we might enable and disable a combo box, based on other settings, but we wouldn't change its contents. When we first populate the settings in the dialog box, before displaying the dialog box, then we might have to disable the combo boxes and set them to the default value.

There is still only one "Set up External Linking" window. On that window, we add a new control at the top. This is a combo box identical to the others, but this one is never disabled. Below, where we used to display one Generic Connector #2 control, the user sees the same thing. But we actually have several of these objects, one on top of another. (They all have the same top, left, width and height.) We display the right one based on the selection in the combo box. (I've had good luck with a page control where each page has TabVisible set to false. I've also had good luck just putting all the controls into a panel, and bringing the appropriate one to the front.)

Depending why we are displaying this window, we might automatically select an item from the page control. For example, assume the user clicks on a symbol, and that alert window is associated with the list named "Order Entry Window". Assume that "Order Entry Window" is not yet linked to any windows. At that time we would display the "Set up External Linking" window, like we do now. But we'd also select the item in the combo box labeled "Order Entry Window". If the user requests this window from the menu, we keep the current setting. When we first start, we point this to "MAIN LIST". We do not save this setting in the layout.

Each combo box has "MAIN LIST" at the top. Next we list each of the other lists, in alphabetical order. Finally we have an item "Add New List".

There are two ways to create a new list. One is just to type into any of the combo boxes. After the user hits enter, or otherwise accepts his selection, we create a new list with that name. (Or select an existing list, depending what he clicked on.) The other way is to select "Add New List" from any combo box. This will create and select a new list with a unique name like "Window List #1", "Window List #2", etc. (The first method is more powerful, but most users won't figure it out.)

Should the window names be case sensitive? We should be consistent with the combo box. When you start typing, it tries to complete the name from the list. I think that it is not case sensitive, but I'm not certain.

5. Automatic updates

At certain times we will send the user to our download page. Note: At one time we discussed downloading the file ourselves, but we’ve seen all sorts of network issues, so let’s do it the simple way.
Checking for the latest version: Originally we discussed using HTTP to find the latest version which is available. Instead, let’s do something different. I will add a special command to the ActiveX control to request generic information from the server. You can use that to request the version number associated with the latest version that is available. I will return the value to you in an asynchronous callback. (Again, I don’t want to add any new type of networking. This will use the mechanisms that we already have in place.)
There can be multiple download pages. (Remember, we can customize the download package for different people.) We will add a new property to settings.ini called “version name”. You will provide that when you ask about the latest version. We might not always update all of the install packages at the same time.
In additional to providing you a version number, we will also provide a URL. For the main download, this will be http://www.trade-ideas.com/Application/Help.html but it can be anything.

We may add even more information in the future. Let’s put the version number on line 1, and the URL on line 2. Ignore anything after line two. Allow DOS or Unix line breaks.
The version number should be very simple. This will be different from what we show the user. In settings.ini let’s call this “short version number”. This will just be an integer.

We should check for this once each time the user starts TI Pro. We should also check for this at midnight US Eastern time each night. This way someone will see the message when they first start looking at the data, not while they are working. This only needs to be approximately midnight; you do not have to worry about day-light savings time, if that is a problem.

If the server gives us a version number that is newer than what we have, then we display a simple dialog box. “There is a new version of the software available. Download now?” If the answer is “yes”, then we go to that web page. “No” dismisses the dialog box and doesn’t do anything.
We only display the dialog box once. After that we stop checking for updates until the next time the user restarts the software.
Errors: If you see something strange in the information I send you, just ignore it. (For example the version number is not a valid integer or the URL is missing.) Don’t display anything to the user. Act like the version number was less than or equal to the current version. So, at midnight, we’ll check again. (This will probably be a text file on the server. If the file is corrupt, then we hope I’ll fix it soon.)
I don’t know when I’ll have the server side of this ready. This feature might be deferred to the next version of TI Pro. However, you should give me any feedback now.

6. Context sensitive help

The latest version of the ActiveX control has context sensitive help. You can click on an icon and we will bring you to the relevant part of the help on our web site. (This applies to alert icons and filter icons.) This is disabled by default. All you have to do is turn it on in the settings.ini file. This should all be explained in the API document on line.
7. Settings.ini
Split this into two different sections. The stuff that we pass through to the ActiveX control goes in one section. The stuff that we use directly in TI Pro goes into a different section.
Remember, we overwrite this file each time the user upgrads, so there are no concerns about compatibility.
