Document Status

This idea is good, but some of the details are rough around the edges.

In particular, the idea of saving the symbol lists locally has issues. We could spend a lot of time on that if people update the symbol lists a lot, especially if they do it one symbol at a time.

QuoteTracker would be an ideal candidate for this library. They would not need to save any files locally. We should talk to them before we actually do any work on this.

The DLL version of this project was originally aimed at Scottrade. But they finally wrote this code themselves. They started shortly after I wrote this spec. So maybe we don’t need the DLL any more. It’s certainly not a priority.
System overview

We produce a lot of real-time, streaming, custom data. Most of the number crunching, and other resource intensive work is done on our servers. The client part of the software knows how to talk to the server, and presents a GUI for the end user.

The bulk of the client software is encapsulated in an ActiveX control. Trade-Ideas Pro is a client program that we wrote for an end user to use our software. Other software developers add the ActiveX control into their own software.

The ActiveX takes care of all server connections. By default the ActiveX control displays all data to the user, without any help from the main program. The ActiveX control has a GUI for some types of configuration (like selecting which data we display). We expect the main program to handle other types of configuration. (For example, we assume that the main program will have one way of asking for the font, and that setting will apply to us and to other windows.) For details of what the ActiveX provides, check out our developer’s toolkit, especially the API docs.
We also have a DLL. This performs most of the same functions as the ActiveX control, but with a different API. These two libraries share a lot of source code, and look the same to the end user.

Requirements overview
Right now TI Provides a GUI to view and edit symbol lists. (From the developer’s perspective, a “symbol list” is a set of strings. These are stock symbols, but that’s not important to the developer.) The ActiveX control provides the functionally to send these to and from the server, but no GUI. The goal of this project has two parts.
1) To extract the GUI code from TI Pro, and make it into a library.

2) To add some code to make the library a little bit more generic.

Deliverable format

You need to deliver the following.

1) The new library should be available as an ActiveX control.

2) The same functionality should be available as a DLL.
3) I forget the word for it, but the DLL needs to include the standard .lib, .obj or .c file, and corresponding .h file, that will allow people using C to link to the DLL as if it were a static library.
4) All source code. This should be good enough for us to post on the web site as a sample, for people who want to modify the library, rather than using it directly.

5) Sample / test code for both versions of the library, as source. Again, this should be good enough for the web site. Keep this as simple as possible!

6) API documentation for these libraries. This should be a word document. Hopefully this will be short and simple.

Programming languages
The bulk of the code should be written in Borland Delphi. (Rationale: 1. It’s my personal favorite tool, and I want to make sure I can take over the project if I have to. 2. I want to be able to steal as much code as possible from the existing Delphi code to make this library.)
The code for part 3 will probably have to be written in C.

The code that tests and demonstrates parts 2 and 3 should be written in C or C++. (Rationale: Only people who use C or C++ really need part 3.)
The code that tests the Active X control should be written in Visual Basic. (Rationale: 1. VB is quick the quick way to do small projects like this test, and 2. a lot of people use VB so let’s make one of the sample programs in VB.)

Detailed requirements

Start with what’s in TI Pro right now.

[image: image1.png]? Symbol Lists.

email (1]

rew new it 3001]
DELL [4]
rewlisttop [1]
newlisttop_ [Emply]
Long Posiions [2]

Shart Posiions (7]

Refresh fiom Server | EditList | Create NewList

Rename List Delete List Copy List

Symbol

— peete

[image: image2.png]» Symbol List Editor

Load From Fie. Inset From Fie. Save TaFie.

TI Pro is a successful program which has been evolving for some time. Use it to see what’s already there. You can already see the existing code in action.

Displaying a window

The symbol list editor is a modal dialog box which comes up whenever the user hits a button on the main symbol lists window. This does not appear in the API.
The main symbol list window is available in two different forms. This can be a control, like the existing alert window and status window. See the existing ActiveX library and DLL for details. The programmer will have to drop this into a window that they create.
Alternatively, the programmer can call a function to display a top level window. This function has one argument. A Boolean will say whether to reuse one window, or create a new window. If we create a new window, there can be any number of windows. When the user closes a window created this way, it’s gone. We delete all the resources associated with it. Otherwise we reuse the same window. If the user closes the window, we just hide it. If the main program asks for the window again, we make sure it’s visible, make sure it’s not been minimized, and move it to the top.

Look at the way TI Pro works when you select “Symbol Lists…” from the menu. This corresponds to the reuse option. Selecting this option will always make sure the window is visible, regardless of its current state.
Look at the way TI Pro works when you select “New Alert Window”. This is what you expect when you create a new window but set “reuse” to false.

Cleanup

This is very important. Before this library is unloaded, we must delete all symbol list windows, even the ones which are hidden. This only applies to whole windows that we create. If the programmer creates a control, it’s up to him to delete that control at an appropriate time.

Warning: Delphi has a callback which tells us when the ActiveX server is being shut down, but this does not appear to work. Standard Delphi finalization code should work.

This one is hard to test because there are so many ways to use an ActiveX control. Displaying the control in a web page, then closing the web page seemed to cause the most problems in the past.
New data sources

All symbol lists must reside on the server side, so the server can do its job. The symbol list editor code also keeps a copy of these lists on the client side. This is required to give the user instant feedback.

Important question: Who has the official copy of the data? Each time we start the program, we make sure we are in sync. The user can also ask us to synchronize the data at other times. TI Pro automatically synchronizes the data when the user switches to a different account.
Mode 1

In TI Pro the server is always the official source of this data. The client library reads whatever the server has, and makes a copy for itself. This should be the default mode of operation, because it is the easiest for the programmer who is using our library. The programmer could just add one new button to his code, which brings up the symbol editor window.

The programmer might choose to read and or update some of these lists. The API for this library will have to include a way to do this. The programmer should not go directly to the server through the existing API, because our copy would be out of date.
Mode 2
In the second mode of operation, we have a local copy of all symbol lists that we maintain on disk. (Rationale: This avoids certain issues that most people don’t like to think about. For example, if the main program updates a symbol list, then shuts down, how can we be certain that the change made it to permanent storage before we shut down.)

In this case, the synchronize command means to read from the files on disk (which the user might modify) and update our copy and the server’s copy. Note that this deletes everything in memory and on the server side before adding the new data.
We will create this directory as required. The default directory will be “My Symbol Lists” in the “My Documents” directory. The API will have a way to override this.

Note that each symbol list has a name which is a string and an id which is a positive integer. The user only sees the name. However, the id is the primary way to identify the list in the code. (I.e. two lists can have the same name.) The files in the directory must follow the same convention. Recommended implementation:

· The list with id 27 will have the name “27.txt”

· The first line of the file will be the name of the list.

· Every other line will be a single symbol.

· When reading any line (except for the first) ignore blank lines.

· Ignore files in that directory which are not valid positive integers.

The programmer can update these lists using the same API as in the other modes. We do not return from those calls until we write the data to disk and call flush() or close() on the file.
In this mode there is no need to display “Please Wait…” on the screen during synchronization.

Mode 3

The programmer might want to have full control over some lists, and leave other lists on our server. (Rationale: The programmer already maintains a copy of these lists, and he changes them regularly. TI is just getting an additional copy of the data.) This is like mode 1, except that the main program gets an additional callback from our library any time we synchronize the data for any reason. In this callback the main program can add, delete, modify, and read lists as needed. We do not update the screen until after we’ve read from the TI server and the main program has finished its callback.
Configuration

I spoke of three modes of operation. “Use case” might have been a better word than “mode.” I don’t think you’ll have a specific property or function to select between these modes. For example, even if someone uses mode 2, he can still request a callback when we do a refresh. Make the API as simple as possible.

I don’t expect the programmer to change modes on the fly. Just make sure we can work in any mode, and the test/sample programs cover every mode.

Hidden and read-only lists
Some symbol lists might be available to the server and the API, but hidden from the user. The list will not appear on the symbol lists window. Others will be read-only to the user. When the user selects one of these, the “Edit List” button will change to say “View List”. If the user selects “View List”, the symbol list editor window will display the list, but the memo control will be read only.
Note: “View List”, like “Edit List”, is only available when the user selects exactly 1 list. The button is disabled when the user selects multiple items, or no items. This code already exists and works.

The main program will decide which lists are read-only, hidden, or normal. This is done through a callback. The callback will be similar to the Delphi callbacks when the user closes or resize a window. We have a “var” parameter which says what type of list this is. We initialize this parameter to a valid default. (Currently this default will always be “normal”.) If the main program does not specify a callback, or the callback does not change the value, we keep the default.
In the DLL, this is a single callback. In the ActiveX library, every symbol list control has this callback. We initialize the return value once, and then call the callback for each control. The order is not important.

Assume that the callback is not expensive. Call it at any appropriate time. Make it easy on yourself.
When there is any type of resynchronization, you need to call the callback again. More precisely, if you have cached any results, invalidate your cache at this time.
The callback will provide the main program with several parameters to make its decision.

· The list name. This is a string.

· The list id. This is an integer.

· The user id. This is an integer. Initially it will always be 0. We are saving room for a function which already exists on our web site.

Interface

This is mostly a review of what we’ve already discussed. This is what’s available via the API.
Master data source

We need to say where we get the data on a reset. This separates mode 2 from modes 1 and 3.
If we are saving this on disk, we need to have a way to know where to save it. When we are in mode 2, and we change this directory, we automatically do a resync. At that time we will throw away our cache in memory and read from that directory.
Reset command

We can resynchronize the data for multiple reasons. The reason might be internal, such as when the user hits the button. The reason might be external. The API needs a way for the main program to request this action.

Regardless of the cause, we need to notify the main program when this happens. See below for the timing of this callback.
Symbol Lists

For creating, deleting, and updating symbol lists, the interface should look a lot like the interface that is already available from our main library.

Reading from this library should be easier than reading from the main library. There should be just one callback when the data is ready. There should be one flag which says whether we have all the data, or we are waiting for something.

Library version number
Both forms of the library will have a function to get the version number of the library. This will be a very simple function which will return a single integer. This will initially return 1. This value will always be the same for both the ActiveX library and the DLL.

This version number will have no specific relationship to any other version numbers.
Rationale: Checking the library version has become a real pain in the main library. Among other things, there’s an issue of the right way to compare two version numbers. For example, is “1.20” before or after “1.3”? Keep it simple!
ActiveX notes

In ActiveX all functions and callbacks must be attached to an object. For simplicity, each function and callback can be attached to the symbol list control.
Note: A programmer using the ActiveX library might create one hidden control just for these callbacks.

In the DLL version, many of these will become simple functions, rather than methods of an object.

The result will be the same in either case. There is only one copy of some of the data. If the main program says the resync the data, that will affect all windows.
Existing code

TI Pro

I’ve sent you the entire code for TI Pro. All you really need today are the parts related to the symbol lists. But we may ask you about additional projects in the future. Many of these will be upgrades to TI Pro.
GUI
TI Pro includes a working GUI for the project. We want to keep as much of that as possible. Rationale:

1) We like the way it looks. There is no need to reinvent the look and feel.

2) Eventually we’d like TI Pro to use this new library. This should be an implementation detail. The end user should not be aware of this change. (Rational: I don’t want to maintain two separate copies of the same code.)
3) There are a lot of little details that we’ve been fixing in the code over the years. (For example, we recently fixed a bug that was only visible when the user changed the number of pixels per inch on his monitor.) We want to keep the code in tact as much as possible to avoid new bugs.

Master Data Source
This part of the code was originally written to be very flexible. In particular, large parts of the code don’t care about the “primary source” of the data. However, that part of the code has never been tested. (TI Pro only has one primary source.) Hopefully you can make use of the original work, but I can’t make any promises here.
Multiple Windows

TI Pro only allows one symbol list window at a time. However, most of the code should make it easy for you to have multiple symbol list windows at one time. Any change to the list of symbol lists should automatically appear in all symbol lists. Again, this was part of the original design, but it’s never been tested.

In particular, notice the way that we maintain the list of what is selected in the top of the symbol lists window. If you select some items in this list, and hit the “refresh from server” button, you don’t expect any changes in the window. The same items will be selected. It’s possible that the data in this list will be modified. In that case, the code is smart enough to select something reasonable. When a user adds, deletes, or modifies a list using the GUI, we don’t take any shortcuts. We update the window in the same way, whether the change was generated internally or externally. So, if someone deletes a symbol list from one window, all of the other windows should update properly.
DLL
I’ve send you the source code for our latest version of the DLL for our main library. I’m sending you this just as a sample of the implementation and interfaces that we already have. This is only included to give you ideas. There are no specific requirements related to this code, but it would be nice if the new API were similar to the existing one. This code demonstrates two specific things:
1) The part of the code which is specific to the DLL is very small. This is very important. I don’t want to test and maintain two copies of the same thing.
2) I manually wrote the code that makes it easy for C to link to the DLL. You can steal this, or do this in a different way.
Confidential information

For the most part the information that I’m sending you is freely available to anyone. The following should not be shared.

1) I’m sending you the code for the DLL version of the main client library. Eventually I will post it on the web site, but I need to clean it up first. In particular, there is a function that allows the API to simulate any operation available on the menu. I don’t want the general public to know about that. It will probably remain in the code, but become an undocumented feature.
2) I’m sending you source code for TI Pro. This includes code that uses our “generic” or “external” connector library. We purposely do not publish any information that would allow other people to use that library.
