Network Improvements Plan

Several changes are planned in the way that Trade-Ideas Pro and related software connects to the server. The goal is to allow more people to connect with less effort. We will continue to have multiple options for connecting, so that we do not sacrifice performance. However, we will include more automation, so the end user will not have to change his ini files as much.

On the server side the major change is a boost in performance for our HTTP proxy. On the client side the major change will be the optional use of the HTTP libraries that come with Microsoft Internet Explorer (MS IE). The overall structure of the software and the communications protocols will not change; however, we will need some small coordination between the client and the server changes.

The way we use the network has evolved continuously since the first version of the software (before TI Pro existed). This is based on the constant feedback that we get from users. The new assumption is that most or all end users will fall into at least one of two categories. 1) They can create an outgoing TCP/IP socket on port 8888 or 2) They have installed and properly configured MS Explorer to deal with any firewalls and proxies. We will keep some or all of the options available in the ini file, but these will become significantly less important.

We used to assume that a person who was behind a firewall could answer the questions in the ini file. If he didn’t know the answers himself, we assumed that he could easily find someone in his office to help him. We now know that is incorrect!

At CIBC we spoke to an “application support” person who told us that just asking the right person to open up a port is a long slow process and is not guaranteed to work. He also said that he wasn’t supposed to know any HTTP proxy servers. He did know one, but he wasn’t supposed to. They have a way of configuring MS IE, but it’s not as simple as offering a proxy server. Instead, they point to a local HTTP server, which gives MS IE some javascript which then finds the proxy servers. We’ve been building up information for a while, but this event was the final reason for these changes.
This is a real big problem on demos. Most people won’t take the time that CIBC did to set this up. Today (7/11/2006) Dan was speaking with UNX. He had to show them the web version of the product. Many of our ideal customers seem to be like UNX. Many of their customers use the software at home and don’t have firewall problems. But the people making the decisions work in offices with strict firewalls, and they have trouble finding their own IT people.
Connection without HTTP

This is already done! Somewhere around version 2.1 of TI Pro we removed the last of the HTTP requirements. By default all data is transferred over TCP/IP on port 8888.

There are still one or two places where the user could choose to look for a file on a web site – thus making the software more flexible – but this is mostly gone. In particular, all preconfigured strategies are now stored in our database and are accessible to the server. The client will still have config strings that look like URLs, but that’s just for backward compatibility. That string is just a key that’s used to look up the data in our database.

New Libraries in the Network Test Program
We will start using the new HTTP libraries in the Network Test Program. We will start here before we do any real work. This will serve as a prototype which we can test internally and with real users
.

In the past we purposely avoided the HTTP
 libraries which come with MS IE. We were afraid of a lot of miscellaneous problems, based on our experience with the MS IE main program. There are also issues of the performance impact of using these libraries. Finally, there are issues of whether or not someone has installed a current version of MS IE, although that’s probably not a common problem any more.

In any case, the use of these libraries should be optional. We do not link to these libraries until we need to! Note: If you reference DLL in the wrong way, Delphi will try to load that DLL as soon as the main program starts. Do not do that!

All access to the library must use non-blocking calls. All access to the library must be in the main thread. The GUI must not lock up during these calls.

We will add two new tests to this program. The first one will go to http://www.trade-ideas.com/NetworkTest.php, like the test that we already have, but this will use the new libraries.
Next we will add a more complicated version of the test. See http://www.trade-ideas.com/NetworkTest1.php. There are a total of 5 messages and 4 pauses. The test program will try to download from this page twice, simultaneously. To succeed you will need to receive all 10 messages from each request. Furthermore, the pauses must be correct. Between the end of the first message for the first request and the end of the 5th message for the first request should be between 4 and 6 seconds. The same thing goes for the second request. And the user should be able to scroll the output window during the test. Note: This is very close to how the HTTP proxy works.
We will not set any proxy information in the new library. We will assume that MS IE already has that information. That is the whole point of using MS
 IE!

We will continue to perform the current HTTP tests, exactly as they are written.

Recent Developments

This is still a good idea, but I didn’t realize how difficult it would be. There are two different libraries that do this, WinINET and WinHTTP. These each have their plusses and minuses.

Neither of these libraries provides a complete solution. They just provide bits and pieces of the solution that you have to put together yourself. I’m afraid that it would be very easy to make a mistake here and very hard to do a good job testing.
We’ve put some of this into the test program already. (We’re at version 2.1.2 of TI Pro right now.) We don’t have all that I’d like, but we have enough that we should be able to do some decent testing on customers’ systems. Unfortunately, we’ve been unable to get any significant test data back from the customers.
New Proxy Server
Currently we have a program in our data center which listens to HTTP requests, passes them on to the main server. This program opens a standard TCP/IP socket to connect to the server. The main server is only barely aware of the existence of the proxy server
.

The problem is that this server is not very efficient or scalable. In particular, we made the main server so it could handle thousands of simultaneous connections
.
 Even if we get too many requests at the same time, we will handle them gracefully. We will queue them up in an organized fashion, and answer them as quickly as we can. We do not create a new thread or process for each request because this is not scalable.

The current proxy server is built it two pieces. The back end uses the same application framework that we built for the main server. It is very efficient and scalable. But it does not speak HTTP. For that we have some PHP scripts running on an Apache server. We know for a fact that the apache part is not scalable. That’s the technology that originally ran the main server.

I’ve looked at other HTTP font ends
. There are several choices. However, none seemed to handle the queuing / scalability issues that we fixed in the main server.
 Maybe you know about something that I missed? If not, the plan is to create our own HTTP engine. I’ve started that, but I didn’t get very far. The
design fits into our architecture well, so we can reuse the application framework
from the main server

.

Initially the server will only speak HTTP 1.0. In particular, it will not know about persistent connections. Persistent connections will be a nice optimization for a future project, but it is not required at this time.

This front end should be flexible. Like almost any HTTP engine, it will need to send different types of requests to different places. In addition to the main functionality of the proxy server, we will want to migrate http://www.trade-ideas.com/NetworkTest.php and http://www.trade-ideas.com/NetworkTest1.php to this server. At this time the client test program will continue to go to the old locations. After that, it will repeat the tests, but it will connect to this new proxy server.
This front end might also handle other types of requests in the future. A future project will move some of our web based alerts to a server like this. There might be one program doing all of this, or multiple programs sharing some code.
Alternative

My biggest concern about the server side of the proxy is scalability. What happens if too many people try connect at once? Will it take down our web server?

It seems like there is a two part solution to that problem.

1) We can have a dedicated web server handling these requests. An inexpensive machine should easily be able to handle 1000 connections, which should get us past 500 users without any trouble. If too many people try to connect at once, they will only effect one another. They will not hurt people going to our normal web site with a web browser.

2) It is important that we don’t switch people to this proxy mode unless they really need it. In particular, if the main server should go down, you could imagine all of our users assuming that it was a network problem, and all of them hitting the proxy server at the same time. I like Leonid’s suggestion that we only switch to the proxy server when someone first installs TI Pro. That would avoid this problem.

I have mixed feelings on getting rid of Apache and replacing it with our own HTTP code. By following these two steps we can defer that decision for a while.

Recent Developments

Currently (10/6/2007) we have all of the proxy traffic going through a dedicated Apache server. This was a simple and cheap solution because we had an old machine handy. This also serves as our backup web server. We’ve been doing this for a some time without incident.

Recently I rewrote the proxy server using Erlang and YAWS. (See below for more details on Erlang and YAWS.) This should provide a much more scalable solution. So far I’ve only tested it with one connection. However, I have every reason to believe that it is ready to go. I haven’t installed anything yet only because it wasn’t urgent. So far we only have a few people using the proxy server.
New Libraries in the Main Software

We need to update the main software to use the MS IE libraries for HTTP requests.
If all goes well in the test program, then this will completely replace the way we currently use HTTP. If not, we may need more planning. We may need to add a new option to choose which library to use. For now I will assume that we only need the MS IE libraries.

As in the test program, HTTP will only work in non-blocking mode, and it will run in the main thread. We will not link to the relevant DLLs until the first time that we try to use HTTP. Many users will never try to use HTTP.

We also need to automatically switch between the two modes of talking to the server. Currently we have a property controlling this. 0 means to use a direct TCP/IP connection on port 8888. 1 means to use HTTP tunneling. 0 is the default. We need to add a third option. 2 will tell the software to automatically choose between HTTP and TCP/IP. 2 will become the default, although the user can still override this setting.
Auto detection has always been tough. By offering exactly two options, this should be easier.

Here is a problem: I have a laptop computer and a wireless network connection. The wireless network is slightly less reliable than CAT5 cable. Also, when I put the computer into suspend or hibernate mode, then I restart the computer, I always have a problem. It can easily take 60 seconds for the network to start working. But many programs, like TI Pro and Microsoft Outlook, try to reconnect immediately. So the first attempt to connect will always fail.
A simple type of automatic detection would constantly switch between the two modes. It would be random which mode was in effect when the network came back up. While my computer is especially susceptible to this type of problem, all computers will see this at one time or another.

The setting in the ini file will allow some users to select the best option. However, we cannot rely on this.
We need to remember what results we’ve seen in the past. If we successfully connect using the preferred method, then we make a note of it. If there is a network problem, we try the preferred method again. We might continue trying that method for 90 seconds before we try the HTTP method.

On the other hand, if this is the first time we have used the software, then we might only try TCP/IP for 15 seconds before switching to HTTP. If TCP/IP doesn’t work, but HTTP does, then next time maybe we’ll only wait 10 seconds before trying HTTP. Next time only 5 seconds. Next time we will immediately go to HTTP; we won’t try TCP/IP unless the HTTP fails. I don’t have an exact algorithm in mind, but we need to record the recent history, and store it in the registry. I’m sure we’ll have to adjust the exact rules after the software is going
.

We will say that we’ve had a successful connection if we open a connection and receive at least one message back from the server. The message parsing software already does some validation of the data. If we have a successful connection of either type, and the connection is broken, then we retry the current type of connection immediately at least once. We know that there will be random disconnects.

This automation cannot be released to the general public until the servers are made more efficient. However, we can test it on a small scale at any time.
Stand-Alone Proxy Server

After we’ve got our own software working, we want to make a general purpose proxy server. This will be a limited version of what we have, but it will be easy to attach to different programs. We’re doing this in part to be nice, but also for publicity.

This will take the form of two separate programs. One will run on the client’s machine, and one will run on the server. (Our software is easier for an end user because the client part is built into the OCX control.)

This will always use the MS IE libraries. There will not be any direct mode built into this software. If the programmer wants something like our auto-detect option, he will have to deal with that himself.

The client part of the proxy software will talk to the main part of the client software using the SOCKS5 protocol. The client part will accept any destination and pass that request onto the server part. If the main client program sends a username and/or password to the client part of the proxy, then that information will be forwarded to the server.

The server part of the software will have a simple config file. This is a list of valid destinations. (We assume that a software vendor, like us, will be using this to allow users to attach to his own servers, and nothing else. A destination is a machine name/IP address and a port number.) The server will store the username and password in a variable, but will not do anything else with it. That’s what you get if you compile the software with no changes, but a programmer could easily add more.

The protocol will be similar to what we have, but they won’t be completely compatible. We might even add in a few arbitrary changes just to make it harder for someone to reverse engineer our main product.
This software should work, but we are putting in a minimal effort.

Limited Requirements

It seems like the SOCKS front end is unnecessary. A simple program could listen on one local port and forward no more than one socket at a time. Command line options are used to set the destination and any other options. You can start multiple copies of this at the same time if you want to forward multiple sockets at the same time.

The encoding will be very simple. Start with MIME base 64 encoding. Replace all “+”, “/”, and “=” characters with “-”, “_”, and “.”, respectively. I would have done this originally, but I didn’t have a MIME base 64 library handy for Linux/C++. This library is available for Delpi and Erlang.

Our Erlang server has special code in it to look for files with the .php file extension. We did that to maintain backward compatibility with the old code. That part should be removed. We can use files named “start.yaws” and “continue.yaws” instead of “Read.php” and “Write.php”.
Recent Changes

January 28, 2007

Some of these projects were deferred. This was due to a combination of a low priority and a large amount of work involved. Recent research suggests that there are easier ways to do some of the things lists above.

Web Front End

http://www.prototypejs.org/ has recently come to my attention. It is a new product which wasn’t around when I first created the web client. However, it is used in a lot of places and it is very successful. I expect it will be supported for a long time.

This gives the programmer a lot of tools that really should have been part of JavaScript to begin with. A big part of this is just getting rid of the browser specific stuff. If you use their functions they automatically check the brand and version of the browser and do whatever has to be done. This includes a nice wrapper around AJAX calls and timer callbacks, among many other things.

This would allow us to write and support code for Firefox (and possibly many other browsers) much more easily. This would also encourage the move from a hidden IFRAME to AJAX, which has some appeal. Presumably we’d also switch from our homemade system of marshaling the data to JSON at the same time.
There are several alternatives to prototypejs. http://jquery.com/ is another library which does similar things and looks reasonable.
Web Back End
A related idea is to get rid of any pauses on the client side. The web client, like TI Pro, would immediately request more data as soon as soon as it finished displaying the last batch of data. The server side would handle any pauses that were required. This would give the back end more control. The semaphores have already reduced the chance of the system getting overwhelmed. But this would give us additional fairness and additional control when the system is too busy.
The problem was always the web server. A typical web server is designed to get requests and respond immediately. It has concurrency to allow some processes to run while others are blocked. But it doesn’t do a good job when there are a lot of connections open. By making the client pause before each request, and trying to respond to each request quickly, we don’t need a lot of simultaneous connections. If we wanted the scheme described above (as used in TI Pro) we’d need the ability to open a lot of connections at once.

I looked at creating my own custom web server as part of any new server code. The basic architecture would be the same as the TI Pro server; the server would just speak HTTP rather than my own custom protocol. I saw several libraries for web servers, but none of them seemed like they’d fit into my architecture very easily. I looked at creating my own HTTP interface from scratch. That looked like fun, and there was a lot of documentation on the subject, but that could take a bit of time to write, and it would be almost impossible to test.

One option that looked promising was FastCGI. http://en.wikipedia.org/wiki/FastCGI I originally dismissed this because it didn’t seem to be supported so well. In particular, the Apache integration seemed to be quirky and out of date. My experience suggested that an Apache module must be supported often or it will quickly have problems. I recently decided to take another look at FastCGI for a few reasons.

· We don’t really need to run under Apache. We’d almost certainly have a separate server dedicated to these requests. It could be a different brand of server. http://www.lighttpd.net/ seems to be the best choice.

· “lighttpd powers several popular Web 2.0 sites like YouTube, wikipedia and meebo.”

· This was originally developed as “a proof-of-concept of the c10k problem”, “It's time for web servers to handle ten thousand clients simultaneously, don't you think?”

· Someone redid the FastCGI module for Apache, http://fastcgi.coremail.cn/, since the original one I saw clearly had issues. On closer inspection, this has trouble, too. It does not support remote processes.
· It seems that FastCGI is picking up some additional interest, so it hopefully will be supported better.

· The Client end of FastCGI is incredibly simple. And I like the way that FastCGI calls other programs. If I ever replaced the web server with my own web server, I could easily use the same communication protocol and client libraries.

I like FastCGI because:
· The way that the server goes out to separate process will fit right in with the way that I’ve already been building server software. If you look at the Read.php and Write.php scripts, all they do is call up a C++ program on a socket, and send data back and forth between the C++ server program and the client program on the other end of the HTTP connection. FastCGI would just replace those scripts.

· The way FastCGI goes out to separate processes allows us to have several different programs all sharing one IP address and all using the standard port 80. If we were to build our own front end there’s a good chance we’d need something like this to multiplex the port between the different programs. Even with just a few programs, it will be nice to be able to make multiple instances of the same program for the sake of scalability and reliability.

· FastCGI has configuration options that will allow the FastCGI server to limit the number concurrent of connections send to a particular type of program. This will allow us to write simple programs for certain tasks. FastCGI is basically taking the place of the semaphore manager does with many of the PHP scripts.

I still want to do some tests on FastCGI before I make any commitments, but it looks like the best option for our needs.

October 6, 2007

New Web Server Technology

While researching the various ways to take over the web server, I found a couple of good options. Both of these are good at handling a large number of connections at once, which was our primary concern.

Erlang and YAWS provides one approach. (http://www.erlang.org/, http://yaws.hyber.org/) YAWS is a web server that is written in the Erlang programming language and allows scripts to be written in Erlang. Erlang programs look a lot like our C++ servers because they have very little shared data and very few locks. Instead they use message passing to share things between threads.

Erlang seemed to be very good for the proxy server because that program is completely self contained. The script I wrote in Erlang replaced a PHP script for apache, and a stand-alone C++ program. The Erlang program is much simpler than the PHP/C++ combination.
Erlang did not seem like the right answer for tasks like sending alerts to our customers. For one thing, mysql support in Erlang is questionable. One option would be to rewrite a lot of our code in Erlang. That seemed like a lot of work, especially when so much of our stuff already exists in PHP and C++ already. Another option was to use the Erlang scripts as nothing more than a proxy to the C++ code. That seemed like a poor fit for that tool. A better approach would be to use FastCGI.

I’ve spent a lot of time looking at lighttpd. This web server is good at implementing FastCGI. Then we could have C++ code listening to FastCGI requests. We could reuse a lot of our C++ code to talk to the web servers.

Lighttpd was a pain to set up. This is because they are releasing a new version (1.5) and not all of the help and sample files have been updated yet. There are a lot of little tricks to making it all work, but in the end it seems to do the trick.
Lighttpd works well with PHP (using FastGCI). This means that some of our code can work immediately. We can choose to convert some things from PHP to the C++ back end, and we can do these one at a time.

Lighttpd also has the idea of a semaphore built into the server. We can say to use a specific back end (like PHP or our custom C++) listening on a specific port to handle requests. And we can also say the maximum number of concurrent connections on a specific back end. This is similar to the way we use the semaphore server. The important difference is that we can have a lot of connections in the web server that are just waiting. We don’t have to create all the PHP processes, which could use a lot of memory or CPU. We can continue to serve other requests, where we have plenty of resources, while some requests are queued up for more popular resources.

Ideally YAWS would support FastCGI. In that case we could easily use just one server for both purposes. However, it seems acceptable to have 3 different web servers. YAWS would do the proxy server. Apache would do the bulk of the existing web site. (We might port that to lighttpd eventually.) lighttpd would take care of the new high performance projects.

Stand Alone Proxy Server
The stand alone proxy server project looks very appealing right now. We should work on that soon. Now that we have the server part done, and we’ve reduced the requirements for the client, there is very little work left to be done.
While exploring Erlang and YAWS I found that their supporters are always trying to spread the word about these products to other people. They are always trying to encourage people to tell their friends. (Lighttpd supporters are the same.) Since one of our primary goals is to get publicity for ourselves, we want to be involved with a vocal group, like this one.

We are actually demonstrating an important feature of the web server. On the web a lot of people ask why anyone would need that many connections. We show off the feature that they are good at, and we show why it is important. I assume we can get a lot of links and discussion from the Erlang and YAWS communities.

This could also be a good way to do more testing and get more feedback. We get so little feedback on the client code that learns about proxy settings. It would be nice to have more.
I just noticed that other people have already done this. http://http-tunnel.sourceforge.net/ http://www.nocrew.org/software/httptunnel.html What we’ve done for ourselves is better because it’s integrated with our client. But offering a stripped down version for the rest of the world is not very interesting any more. (
e*trade

We have a project with e*trade where were are providing a web based API. This is basically the old API that we used to use for the ActiveX control. We had some issues about scalability which forced us to move to the C++ server. Now we need to make that old code scalable. I’ve been looking at lighttpd periodically. This project has finally made this research urgent. I’m currently installing and testing version 1.5 of lighttpd.

e*trade will need their own web server anyway. They will be writing the client side of the code. They could make a mistake or add users faster than we expect. One concern is that they will overpower the server. I want to make sure that they don’t hurt our other users. So this is an ideal case to start working with lighttpd.

e*trade is talking about giving our software to 8,000 users. We don’t know how many people will actually use the software, and we don’t know how quickly they will start using the software.

�This is in CVS in the module named ClientTest

�Could you please send me sources of the NetworkTroubleshooter.exe?

�I think that we need the WinInet functions. I’m looking for something high level. In particular, I’m looking for something which can automatically determine the right proxy settings. That can include reading a JavaScript program from one server, and executing that JavaScript to determine which proxy server to use for the original request.. Basically, I want to be able to do everything that MS IE can do. And if someone has already configured MS IE, then they should not have to repeat this information for us.

�Which libraries, in particular, do you mean? Last versions of Internet Explorer use both low-level WinSock2 libraries and high-level WinInet librarires. While WinSock is stable enough regarding function declarations, functions in WinInet is more version-specific and often require certain version of IE to be installed.

Delphi has access to both libraries using WinSock.pas and WinInet.pas modules.

Or do you mean other libraries?

�I assume that we’ll use one set of libraries for everything. Unless there’s a problem with that, it seems like the simplest way to go.

�So would we use MS IE libraries only to ask for the proxy information and then use this information in Indy or also for HTTP operations themselves?

�The proxy server and the main server run on Linux. They are both written in C++

�What platform this proxy server uses (Linux or Windows)? And the same question regarding the main server.

�I have already prepared information for a design review, so we can go over this in more detail. I’m not using any 3rd party libraries except what comes with Linux. I’m using STL extensively. I’m using the operating system calls directly to manage the sockets. I have built up a significant application framework of my own. Multiple copies of the software can run simultaneously, behind a load balancer. However, we currently are just running one copy of the program.

�What libraries and technologies are used in main server? Do you have several instances of main server running? How the typical questions of data center are resolved (load balancing, fault tolerance)?

�I don’t remember all of them. I looked at the top items on Google. I know that TUX (a.k.a. “the red hat content accelerator) was a big disappointment.

�Which HTTP front-ends did you review?

�I suppose the current load is somewhere around 1,000 hits per second. Ideal response delay would be less than 100ms total, including the network time. However, these aren’t the interesting numbers. I can always buy more or faster computers. One issue is what happens when we get a sudden burst of requests, much faster than the average. Another issue is what happens when something is slow on the server side, and the requests start to build up. The important thing is to queue things up properly so we don’t fail in these extreme cases. Apache fails because it uses one process per request, and processes are expensive. We’ll discuss this more at the design review.

�I have an overview of the design in outline format. However it’s really made to guide a discussion. I don’t think it will make much sense by itself.

�In general, what are the main performance requirements for the new HTTP front end for a particular hardware configuration. I mean at least two parameters:

 Maximum response delay;

 Number of requests processed per second.

Several years ago I have worked on a large project – implementation of application server for wireless platforms. This app server has processed TCP/IP requests using different protocols, including HTTP 1.0/1.1. The implementation was done from scratch using sockets and the server was compilable both on Windows and *nix platforms. Probably, we could use some ideas and even code snippets that I have, for our own development.

�I’d like to have an overview of your application framework and architecture of the system. Do you have any written materials that I might read?

�That sounds reasonable.

�Another possible solution is to have something like AutoConfigure option in ICQ messenger. At any time user can select this option from the menu and the program will analyze the network and configure itself to use maximum performance and stability. I think it is easier to implement than auto-configure as you described using different time intervals. I think user’s network configuration doesn’t changes very often, so running auto-configuration logic every time we connect is not optimal.

We also could perform the very first auto-configuration during installation. InnoSetup allows to execute EXE file during installation, but erase it after installation. We could have the program like your TroubleshootNetwork.exe which would analyze network and insert into our INI files or into registry the best configuration.

