Design Review covering top level design of software architecture at Trade-Ideas, LLC

1Design Review covering top level design of software architecture at Trade-Ideas, LLC

2Purpose of Meeting

2Top level software requirements

2Top level major issues:

4Top Level design

6Data Overview

6Database

12Other Data Sources

12Historical Analysis Server

17Web Client / Server

18Trade-Ideas Pro / ActiveX Client

29Statistical Analysis Servers

41KLOCs

Purpose of Meeting

Original purpose (2005): Provide Continuity in case of turnover of technical staff at Trade-Ideas

· Trade-Ideas has one full-time developer, Philip Smolen, who has been responsible for the development and malignance of all software.

· Suggestions will always be taken, but most of the software discussed here is already in use and working well.

· Although the architecture is stable, new features are always being added.

· There is little or no “routine” work on the technical side. Most of the work is automated. Technical work involves finding the cause and solution to novel problems.

· Some work has been done by contractors, but this is never part of the core architecture, and this represents small, well documented, isolated projects.

· Your goal is to ask questions and take notes as if you were going to take over the project in 6 months, when the current developer leaves.

· There are no actual plans to replace the current developer. This is only for unexpected events.

· You might be offered a job. More likely you would be hired as a consultant to bring other developers up to speed.

Current purpose (4/2008): Training new staff
Top level software requirements

Listen to large volumes of real-time stock data, and report on “interesting” events.

· Our internal push is toward statistically interesting events. For example, if a stock typically traders a certain number of shares / day, and today people are trading it at 3x the normal rate, that is statistically interesting.

· Customers often push toward more traditional analysis. These formulas are well documented. We try to push away from these because we don’t respect them.
· It’s conceivable that someone could set this up in their home, but it requires a lot of computing power and a lot of network bandwidth to do this analysis. Most of our work is done on the server side, so an end user requires very little CPU or network bandwidth to use our product.

· User configuration screen is limited primarily by what is easy for a user to understand. Our users typically have very limited computer skills. While some have some programming ability, we do not cater to them because that’s not the bulk of our market.

· Minimal maintenance required by our staff. Live data comes in for 11 ½ hours per day, with overnight processing after midnight. Users can access historical data 24x7. We do not have staff watching at all times.

Top level major issues:

· We are pushing our data provider to the limit.

· The data provider allows us to request large amounts of data and provides fast access through the internet, however, the delivery is optimized for a slower connection. In particular, if there is a spike in the data, or a temporary network slowdown, the fixed sized queue on the data provider’s end will fill up quickly. I.e. their queue stores X bytes of data, not X seconds of data, and X is fixed for all users.

· The data provider primarily works with interactive applications. Automatically detecting and dealing with problems is a pain at best. A typically user would notice something unusual and reboot his computer, but we can’t do that.

· Quantities of data.

· We do a lot, but not as much as some people would think. As per Ziff’s law, the most interesting 100 stocks do about 1/3 of the trading. We don’t watch anything that hasn’t traded in the last 2 days, leaving us with about 8,000 US stocks on the NASDAQ, AMEX, and NYSE.
· Multiplication of requirements

· Our architecture requires that we know in advance what we are watching. Then we let people select from what we have.

· If one customer demands a new feature, this adds a cost which is proportional to the number of users, even if only that one person (or even no one) is using that new feature.

· Some features, especially the traditional analysis, have a lot of configuration options. Because of our architecture, many of these options appear as new features. Even if the code considers a number to be a parameter, so it is easy to write once, each time we fill in a new value for the parameter, that adds some work for every user.

· The biggest limiting factor is the number of alerts that we produce times the amount of information that we store for each alert times the number of users examining the data.

· Repeatability
· Although most of the customers do not realize it, most of these formulas are not completely objective. Different people computing the same formula can get different answers.

· Some parameters are not very specific.

· When people say close, what does that mean?

· When people say =, the usually mean close.

· When historical data is requires, such as in an EMA, the amount of history can vary from one user to the next.

· Real-time constraints can alter the data.

· In particular, one persons clock might be slightly different from another’s, so the data will be grouped differently.

· Traditional formulas tend to exaggerate this problem, where our proprietary formulas try to minimize it.

· Bad data

· The data we receive is filled with mistakes.

· Some are fixed almost immediately, others may be fixed at the end of the day. Different data providers can fix these problems at different times.

· End users never understand this.

· Our analysis looks for unusual stuff, so we often find the bad prints.

· Performance

· Need realtime responses.

· Aimed at a human, not a computer, so we have some leeway here.

· It is almost impossible to simulate large numbers of users before moving things to the live system.

· To some degree the market data is easier to simulate.

Top Level design
· Most data starts from the exchanges. NASDAQ, NYSE, etc. It is provided to our computers through a company who specializes in delivering this type of data.

· Overnight we do background processing of the data. The primary purpose is to determine what is normal for each stock, so we know when the real-time data looks different.

· In real time we have multiple servers watching the market data and reporting interesting events as alerts.
· Some other services can provide alerts or input to the alert creation process.

· The central repository for all alerts is the database.

· Several programs collect user requirements and scan the database for matching alerts.

· Several types of clients connect to those programs.

· We provide miscellaneous related data to the user, primarily through the web site.

· The database stores administrative data like a user’s password and payment history. This is used by some of the servers described above, and to a back end system for our employees.

Note: New exchanges not l isted below. Overnight process now can read from the database.
[image: image8.emf]NYSE

NASDAQ

AMEX

Etc.

Data

Provider

Market

data

Statistical

Analysis

Servers

Historical

Analysis

Server

Market

data

History

As text

files

Database

Alerts

History

Various

Distribution

Servers

Alerts

Requests

Other

Data

Sources

Background

Information

Alerts

Various

Clients

Alerts

Requests

Web

Browser

Administrative

Details

NYSE

NASDAQ

AMEX

Etc.

Data

Provider

Market

data

Statistical

Analysis

Servers

Historical

Analysis

Server

Market

data

History

As text

files

Database

Alerts

History

Various

Distribution

Servers

Alerts

Requests

Other

Data

Sources

Background

Information

Alerts

Various

Clients

Alerts

Requests

Web

Browser

Administrative

Details

Data Overview
· Major Inputs

· The most important thing we get from the market is a collection of “prints”. A print is a record of one person selling and another person buying a certain amount of a specific stock for a certain price. Some people just watch the “last” price as a level, but we prefer to think of each print as an interesting, separate event. This is sometimes called “time and sales” or “time of sales.”

· The “inside market” is composed of the best prices that people are advertising for stocks. The “best bid” is the highest price that someone will pay for a stock at this moment. The “best ask” or “best offer” is the lowest price that a seller will accept for a stock. These are firm commitments. They are often used as a sanity check on the print data. This is sometimes called “level 1” data.

· Historical data is available in multiple forms. We mostly look at daily candlesticks and, in the shorter term, 1 minute candle stick. A one minute candlestick contains the price of the first print in the 1 minute period, the price of the last print in that period, the highest price and the lowest price of any print in this period. Yuck!

· Major Outputs
· An alert is an event. (Most of our users have no concept of an event.) An event is instantaneous. An alert type description of the general criteria of for the event. For example if the price of a print is $10.00, and the highest price we’ve seen for that stock is previously today is $9.99, we will create a new alert. The type of that alert is “new high price”. The user can set his filters to see alerts of these types or not.

· Each alert comes with additional data. The user can filter on this data. For example, the user can request to see alerts only for stocks which cost at least $5. When the user requests more alert types, he is requesting more data. When the user adds additional filters, he is requesting less data.

· Some of the addition data is available to the user directly, and some only through filters. For example, we do no display the prices of the stock at the time of the alert because that type of information is strictly regulated.

· Primarily the user will request to see new alerts as they happen. A user can also request the same data for a specific historical timeframe.

Database

· The database is the glue which holds the system together

· For real-time alerts, the database serves as a large queue. When a user first starts, he asks what’s the most recent alert. After that, he asks what new alerts match my criteria since the last time I asked.

· Several producers and several consumers all go to the database, many written in completely different tools.

· Debugging and development goes directly to the database in SQL.
· The database is a collection of machines all running MySQL.

· The database uses transactional tables.

· These cost more, in terms of space and CPU, but they work better for real-time systems.

· Typical problem with non-transactional database: One person accidentally makes a slow request for alerts. The next time new alerts are added, that operation will block. When new people want to read alerts, they have to wait for the new additions, which are waiting for the slow request. Transactional tables have more precise locks and tables with multiple versions.
· Most of the time we avoid this by breaking up requests into small pieces, but transactions form a good safety net.

· Side benefit: Write directly to the disk, and avoid the file system for more performance.

· The database holds most of the data that we store.

· Passwords, usernames, etc.

· Non-real-time Background information on stocks which we provide for free.

Tables in the database:
	Table Name
	Description

	AX_windows
	This is old and I hope it will go away soon. This is part of version 2 of our ActiveX API. This contains the request that the user made for each of his windows. This was an attempt to be more efficient than the web version of our software, where the user restates all of his filters each time he wants data.

	admin_permissions
	This describes who can access which accounts for our back office. This is not for our own employees, but for customers who buy bulk licenses and see what their people are doing. This interface works, but it hasn’t been used much and I expect it to change a lot as it is used.

	alerts
	This is the big one. This is the queue of all alerts. The id column auto increments to allow multiple providers to dump alerts into it. The id is the way that consumers decide what data to they haven’t seen yet. The date and time field is also an index, but this is only used to find a good starting place for historical requests. Because there are multiple producers, these are not guaranteed to go in order (although they should be close.) Other indexes were originally added for special purposes web pages, but sometimes help the normal queries, too.

	alerts_daily
	This contains information about each stock which we only update once per day. This is almost always joined with the alerts table. This is a separate table for performance reasons.

	atrade_history
	These tables allowed us to keep performance data about some alerts which were provided by a separate company. That relationship is slowly dissolving, as the atrade product is not performing very well. These will probably go away soon. These were only access by the web interface.

	atrade_history_daily
	

	auto_wl
	The white label is a property that we keep for each user. This allows us to track where a customer came from. Often we use pattern matching to determine, initially, where a customer came from. This table has a list of patterns, and the white label associated with that pattern. This is only used for new users.

	banned_emails
	These are used by our free trial system. When we see too much abuse from a single email address or ip address, we block it here. These are used by many of our back end reporting tools. Note: The free trial system recently was taken off line.

	banned_ips
	

	email_demos
	This records who has received a free trial. This prevents duplicates, and allows us to further examine the free trials in our back office.

	format_lists
	The user can select colors and styles for the display of his alerts. Rather than giving him full control, we give him a small set of choices, where each choice contains an entire set of styles. This table contains the names and user friendly descriptions of these styles. This table has never changed. We could add to this at some time, but a few places use a specific item from this list.

	format_values
	This table includes the actual formatting instructions to go with format_lists. We constantly add to this as we get new alert types. The instructions are primarily HTML, but they are simple enough that the non-html clients can decipher them.

	hosts
	This is a special purpose table allowing us to track computers which do not have a fixed ip address. There is a script on the web server that allows you to reference one of these computers as if it had a fixed name and address, and another script which allows that computer to check in. This is a complete side issue, and not part of any production work.

	link_destination
	This is used by the web based client to store the users’ external linking preferences. For example, if he sees a stock in our software, he might click on the link and go to Yahoo! Finance. This should really be part of the users table. I first created this long ago, and I mistakenly thought that this information would cause the users table to change too often. There are several references to this table in seldom used web scripts that I don’t want to retest.

	list_permissions
	This allows people to share symbol lists. user_id is the user who wants to access the list. owner_id is the owner of the list. A user can always see his own lists. user_id 0 refers to all users.

	other_payments
	This is part of a system that has never really been used. We’re currently working with the one customer who should be using this to get the requirements fixed. This is a list of every time someone says they will pay, and we need to bill them.

	raw_ipn_field
	This is data from PayPal. PayPal data comes into the web server as a list of fields. That list can change over time, and with different types of transactions. For the maximum flexibility and debugability we store the data as a list of fields. This is a pain to use, but I can’t see getting rid of this ever. We might add some additional tables to hold the same data in other formats, but not get rid of this.

	raw_ipn_msg
	Each message from PayPal gets one of these. We seldom look at this, except for the id number automatically generated by the database. That becomes part of each record in in raw_ipn_field.

	signup_special
	These are special deals that we offer. If someone adds a link to us on their web site, they often want to give a special deal to the user for signing up there. This allows us to extend the free trial to a specific date, or a certain number of days from the current date. This also had a field for some special text, but this is seldom used. The text is difficult to write because it will appear on multiple web pages. Note: Questionable value with no more free trials!

	sponsor_authorize
	Similar to other_payments, but not as nice!

	survey_apr_2005
	We have a web page giving a survey to customers, and other page that displays the results.

	symbol_info_f
	This is used by our StockInfo pages to give information to the user for free. This particular table provides “fundamental” data, such as the company name. This is mostly changed by the overnight software, but there are ways to override those values by hand, and to make these values stick. These are only deleted by hand.

	symbol_info_m
	This is information will be available to the StockInfo pages if it is ever finished. It is all entered by hand. It includes information like the company’s web site which is not available through our standard feeds. It is also intended to replace the manual/sticky parts for symbol_info_f, to make the table structure cleaner. This is a good idea, but because of the manual labor involved I don’t know if it will ever be finished.

	symbol_info_t
	This is also available for the StockInfo pages. This contains the “technical” data, such as various moving averages of the stock price. This is only updated by our overnight processing. Old values are deleted each night.

	symbol_lists
	Users can limit the software to display only certain stock symbols that they list out by hand. These are the names of the lists, as displayed to the user, and the ids of the lists, as used internally. The id is the only thing that is saved when a user stores his settings.

	symbols_in_lists
	These are the individual stock symbols in the symbol lists. These are stored in a table and accessed by a join to make it easy for the real-time software to do the filtering. I’ve worked a long time to try to make this efficient, with limited success. In part, it’s hard to optimize for all the different cases. When reviewing a long list of alerts, you want to do something different than if you only have a few alerts to examine. The odd index structure of this table was needed to deal with the flexibility we give the user. If a user make one query which accesses different lists owned by different users, that is a tough case. We index these first by stock symbol, because that’s the part that we know for certain.

	user_cookie
	This stores a history of the user. The strange layout is in part historical, since I thought we’d need to access old cookies. The web part of the code is very complicated, and I don’t want to change it until I have to. Eventually I started putting other useful stuff into the cookie field since I already had it.
Cookies are used to make sure that, if the user has several web pages looking at our data at the same time, they are all on the same computer. Otherwise we cut off the data, and tell the user to buy another account. Once per hour we update the cookie.

As a side effect of this security mechanism we get a good overview of the user’s actual usage. The web logs have more details, but they have too much and are hard to access. The other types of clients have to use this table so you can’t have different people sharing the account at the same time using different clients. But they also take advantage of the history that this keeps.

	user_deltas
	Every change to the user table is listed here. There is a clever php function which takes care of that. Changes made directly from the SQL command line do not appear here. Very userful for our back office, but not used for anything else.

	users
	This has the bulk of the information about each user. The username is the account name that the user is expected to provide. The id is how we refer to the user internally. Each user has an expiration date. He can use the software up until that date. That way we don’t forget to turn off a user. Many more fields.

	valid_paypal_subscriptions
	This matches a subscription id in PayPal to a user account. This is required for a few reasons. For one thing, when a person first signs up, we need to know a lot of details about the subscription. When he makes a regular payment, we don’t need to know as much. Keeping this table allows some of our scripts to stay simple as we change the details of the subscription process. Also, this allows us to make some other changes. For example, a person will sometimes pay for one account, when he meant to pay for a different account. By changing this table, we can make this change without any action on the user’s part.

	view_mru
	This stores each user’s recent settings. This data is provided to him in various ways in the various clients. This is only a convenience.

Database Semaphores

The database can be overwhelmed, especially be the web server.

· Usually it is okay, but a minor glitch which slows you down can cause too many requests to come in at once, and it’s hard to get out of that situation some times.

· In really bad cases normal web requests can get locked out.

· In busy times the web can take too many resources from the other clients which are better behaved.

The solution:

· A simple semaphore for each class of requests means that no more than X requests of the specific class can happen at once.

· SempahoreMain.C listens for and manages requests.

· Can be configured on the command line, easily.
· Short because it reuses framework from C++ alerts server.

· Contains more documentation about the problem.

· Semaphore.php

· Connects the web server to the semaphore manager.

· If the manager is not running, then all requests succeed immediately.

Other Data Sources

Currently we have only one active data source in addition to the primary servers. For development purposes we can go to a special web page to create an alert. This is mostly used to test new features and new software installations. Potentially, however this can do anything.

We previously received alerts from ATRADE, a separate company. These looked just like our alerts, but they had their own alert types. These came in through a very simple web API, not much different from the way we manually add debugging alerts. This worked perfectly, but there were other issues that made use separate from ATRADE.

Originally all alerts came in this way from our primary alerts servers. This quickly overwhelmed the web server, and generally was not efficient. However, on smaller scales it works great.

Plans are in works for people to provide only background data to us. In the common case it would be something like “If DELL gets up as high as $40, tell people to buy it.” A separate company would provide a list of tips like this to us, and we’d give them their own alert type. We’ve tried this once before, and failed only because the other party lost interest. Others are interested, and the biggest issue is how to charge for it.

Historical Analysis Server
(Overnight, non-real-time analysis)
· Possibly the most confusing piece of code.

· The requirements constantly change.

· The technology constantly changes.

· This is pushing our memory limits, so we have tricks to get around that.

· There is no one specific problem, but this software has had to evolve more than any other in our system.

· Data Selection
· The first job of the server is to see which stocks we want to look at. The rest of this process and the real-time servers only respond to the stocks selected in this phase.

· This phase also assigns data to a particular server for real-time processing.

· Originally and once again, data selection was part of a separate program. This allowed the rest of the processing to be broken up into manageable pieces. (not a problem any more.) For example, each real-time server would only get the data it needs. This changed as this piece of software became more complicated.

· Historical data

· Ideally each type of data analysis is self contained. You create a single object in the real-time system, and it creates other objects and makes other requests as needed.

· Requesting historical data, takes a long time, mostly because of the volume of data. By separating the historical request from the real-time processing, we ensure timely delivery.

· We also do a lot of processing to this data. This further saves time in the real-time system. More importantly, the real-time system typically has to read in a lot less data, and uses less memory.

· Architecture
· The overall design has changed significantly over the years.

· The design of the real-time servers is not appropriate for this server

· Too complicated.

· Too hard to separate a slow response or a lost request from a request that provides no data.

· Too hard to control the use of memory.

· The original design was based on how we used to get data.

· Originally only one type of data.

· Originally we only looked at data for one stock at a time.

· A different data provider.

· We’ve separated out most of the formulas and the output of the system from the data provider, but the control logic is big and complicated and based heavily on the data provider.

· Major Issues
· Memory consumption is huge.

· We try to keep track of which information is reused in multiple places, and which can be abandoned as soon as we are done with it.

· The first time you read a message, that decompresses the message, and uses more memory.

· For the sake of speed we try to send a lot of requests at once, rather than request data when we need it. This helps enormously. When we do our processing, the data provider is in a maintenance cycle and is slow.

· Noticing problems is tough

· When we get no data, we don’t know if this is a single bad request, or if our connection is hosed.

· We could possibly detect a trend – when there is a problem with a connection it usually gives us no data for any stocks – but this type of analysis can’t be done until we start decompressing the data.

· Our current solution is to request blocks of data for 200 stocks at time. When we have a failure, we are missing 200 stocks, rather than having no data.

· Sometimes we can’t even log in.

· This is slow.

· If there is a problem and we don’t detect it right away, we can’t easily rerun the program. (This has gotten better because each server now does it’s own historical data.)
· Most of this would be moved to the real-time server, and the design would have been cleaner, if not for the timing issues.

· Output

· The main program spits out several CSV files, described below.

· The top row and left column are keys. The body contains the values.

· The main program also produces gif files describing each stock.

· A separate program copies some of the data to the database.

· This can join several different files and put everything into the database together.

· Old data is often deleted, so you can’t just run this more than one time to get more data files into the database.

· Yesterday’s data is deleted as the first step of the processing.

Source Files:

	Overnight Application
	This directory contains the main program for overnight processing. The files contained directly in the directory are the generic files which are not specific to any data provider. A sub directory contains things which are specific to a data provider. This program also relies on source files shared with the real-time software, and stored in that directory tree.

	CandleModels.pas
	Attempts to convert standard candlestick data into our proprietary format. Some data is lost, but it’s not worth it to look at the more detailed data. This provides a good estimate in the right format.

	CorrelationSymbols.pas
	This is a simple list reminding us which stock symbols to compare to all other stock symbols.

	DataFormats.pas
	Header file (no implementation) describing common data structures.

	FileNameEncode.pas
	Convert odd stock symbols into strings that are valid filenames. Used to communicate with other processes using the same encoding.

	GifChart.pas
	Takes in a list of daily stock prices and spits out charts in gif files.

	gifimage.pas
	COTS (Commercial off the shelf – 3rd party tool.) to save in GIF format.

	ProcessData.pas
	The bulk of the formulas, after the data has been collected in a standardized format.

	TwoDArrayWriters.pas
	Writes CSV files. Writes them with little memory consumption, and no ability to read.

	VolumeWeightedData.pas
	Manages our proprietary way of summarizing historical data.

	RealTick
	This contains the part of the software which is specific to the RealTick data provider. When this directory structure was created, we had another data provider. They were never both active at the same time. However, this layout serves as a reminder to keep some parts of the code as clean as possible.

	Various input and output files
	Because the main program is in this directory, we often run tests in this directory, and we often see output files in here. These are described below.

	Common.pas
	Random shared utilities. Common only to the files in this subdirectory.

	ProcessSymbolsUnit.pas
	Requests data from data provider, calls the functions which process the data, then deletes the data.

	RequestHistory.cfg
	Standard, created by Delphi.

	RequestHistory.dof
	

	RequestHistory.dpr
	Main program. This is a command line program.

	RequestHistory.exe
	 Executable

	SymbolInfo.pas
	This stores administrative information about each symbol. In particular, it says whether we’re requesting full processing for this symbol, or it’s being used for comparison other stocks. This also has the ability to merge the requests, so we only request historical data once, even if a stock is being used in multiple ways.

	Update Stock Data
	This directory contains the program which copies some data from the CSV files to the database.

	Various input and output files
	Described below

	ConfigFile.pas
	This reads Config.ini, described below.

	libmysql.dll
	COTS. Comes from MySql, to talk to the database.

	mysql.pas
	

	UpdateStockData.cfg
	Standard, created by Delphi.

	UpdateStockData.dof
	

	UpdateStockData.dpr
	Main program. This is a command line program.

	UpdateStockData.exe
	Executable.

Input files:
	Config.ini
	Used by UpdateStockData, and other programs, this provides information about the database. In particular, this allows you to easily move from a test environment to a production environment. More items should be added to this file.

	Correlation.txt
	These are the stocks which are compared to all other stocks.

	Futures.csv
	Out of date. Futures used to be more complicated.

	Futures.txt
	A list of futures symbols that we track.

	TAL_Index_List.txt
	A list of index symbols that we track.

	StandardCandles.csv
	This tells us how much data and of what type we need to save in the standard candlestick format.

	Symbols_Short.txt
	Used for debugging, this is a short list of stock symbols. To run quickly, use these symbols, rather than the large universe.

Output files:

	Additional_OvernightData.csv
	This provides various debug information. The file is often when running in a production environment. But it’s a pain to add and remove output files, so we leave the empty file.

	OvernightData.csv
	This is the oldest of the files. That is why it has this simple name. (The user can specify the name for this file, and most of the others will be based on this one.) This contains general information about each stock, like it’s volatility.

	F_OvernightData.csv
	The f is for “fundamental”. This contains data about each stock which is of no use to the real-time analysis servers. They don’t use this data, or they can easily get it from the data provider. This is sent to the database and may be used in other ways. Separating this file saves memory in the real-time servers.

	SC_OvernightData.csv
	These are the “standard candles”. Some of our newer analysis relies more on the standard way that stock data is examined. We only include data from within the normal trading hours. We only go back until we see a time period with no data. There is no one generally accepted way to deal with this, so we choose to trim the history there.

	TC_OvernightData.csv
	This contains general information about each stock, like recent daily highs and lows. “TC” is for “Time critical”. In theory, if the processing could not be done overnight, you should delete this file, but keep the old data in files like OvernightData.csv. We’ve never actually done that, but the idea is nice.

	VB_OvernightData.csv
	This stores our own proprietary summary of the recent history of the stock price. Instead of candlesticks, we use “volume blocks”. This file is huge. Potentially this file could have volume blocks of different time scales, which explains the keys in the left column, but we’ve never used that feature.

	V_OvernightData.csv
	This stores the average amount of volume that each stock trades at different times of day. This could be part of OvernightData.csv, but it just looks a lot different. Pre and Post have not been populated since eSignal.

	Symbols.txt
	This is the default name of the list of symbols that the real-time system needs to monitor. This can change.

	Symbols1.txt
	Often we split up the work for the real-time system into multiple servers. This can be requested from the command line. The user has to specify these file names, but the two shown here are the most common.

	Symbols2.txt
	

Web Client / Server

· Purpose

· This is the oldest client. This was considered to be a simple way to distribute the data.

· This is still good because it works in more cases with less effort than the ActiveX stuff.

· In particular, it is less likely to have trouble with firewalls and such.

· Server Implementation

· All Apache and PHP

· Client sends individual requests to the server.

· Server maintains no state.

· Inefficient because it is very repetitive

· The hard part is allowing a person to have multiple windows on the same computer but not on different computers.

· Can’t use IP address

· Many of our worst “weasels” are groups of people all sitting in the same office with the same IP address.

· AOL and others will generate random IPs that change all the time.
· When you first start, we send you a random cookie, which we save in the database.

· When you ask for more data, you implicitly include that cookie.

· Once an hour we change to cookie to something else at random.

· This code is ugly, but it works.

· I’d like to move the code to something C++ based, instead of Apache and PHP.

· Want the scalability we got in the ActiveX code.

· This has been a low priority as what we have works.

· The Web stuff updates about 1/6 the speed of the ActiveX stuff.

· About 1/3 of our users use the web stuff, and 2/3 use the ActiveX. (Even fewer use the web now, 2008.)
· Semaphores helped a lot.

· Client implementation

· Currently only works on MS IE only.

· Uses IFRAMEs.

· I chose IFRAMEs because they did compression correctly.

· The sample version works better as of about 2007, but is still lacking.

· Plans are in work to change the implementation.

· Switch to XML.

· Make Mozilla work.

· I chose this implementation because gmail and google maps use it, so it’s not as obscure as I first thought.

· It is still poorly documented and not official.

· However, I don’t expect anyone to break it now, and it should become more of a standard.

· The article “Life Without Refresh” does a good summary of what’s involved.

· http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/lifewithoutrefresh.asp
· This has details on how to use the stuff we’re moving toward.

· It also describes the alternatives, although it’s discussing normal frames, not IFRAMEs.
Trade-Ideas Pro / ActiveX Client

· Appearance

· The data can be retrieved in an ActiveX control which is easily embedded into 3rd party applications.

· We eventually created TI Pro, a very simple application which does little more than host the ActiveX control.

· This control retrieves and displays data.

· It is possible to use the data in other ways, such as your own display, or something programmatic.

· Most people use our display.

· Interface History

· Version 1 was very much like the web based alerts.

· All data was sent via HTTP.

· There were some attempts to send less data with each request, by storing part of the request in a database table.

· All windows update together, possible making the communication from the server more efficient.

· We finally upgraded the last of these users, and we don’t support that interface any more.

· Version 2 was very much like version 1.

· Structure was the same.

· All server output was changed to XML to all for the minor upgrades to be smoother.

· Minor upgrades happen all the time.

· Clients only have to upgrade to see the major server upgrades.

· Clients using different major versions of the software talk to different server programs.

· We are trying to push people away from this, but it is still supported.

· The last customer stupped using this around 2007.

· This is called “API2” in many places.

· Version 3

· This uses all TCP/IP sockets

· HTTP tunneling is available, but is separate from the main code.

· There is some legacy design from the old setup.
· Many messages from the server take the same format.

· In many places there is a strong one-to-one correspondence between client messages and server messages, from the HTTP days.

· Using a single TCP/IP socket, rather than a stream of small HTTP requests, allows us to do much better compression.

· This is one of my favorite features.

· The total value is unknown, but it allows me more freedom when designing the communications.

· Having one main program written in C++, rather than a bunch of HTTP requests, gives us more control.

· This allows us to manage our growth in a scalable way.

· This allows us to manage spikes in requests or data in a sane way.

· This is the primary reason why we needed the upgrade.

· This is called “API3” in some places.

· Upgrades are seamless.

· A user can install the latest version of the ActiveX control even if the software provider doesn’t know about it.

· A user will see a continuous list of new features (described on the web site) but will probably be unaware of these three major versions of server software.

· Design philosophy

· The remainder of this document will only describe version 3.

· Only minimal maintenance is ever done on version 2.

· The last of our users stopped using this in 2007.

· This is still part of some proposals including e*trade and ?. Not in active use.

· Worst case we force everyone to upgrade.

· Have just one thread handling database requests, and just one connection to the database.

· This is the opposite of the HTTP versions. All requests are serialized, so we are in control.

· If something is slow, all requests wait patiently in a queue, rather than sending more items to the database at once and/or rejecting new requests.
· Have a separate thread for I/O.

· The original concept had only these two threads.

· The design is good, although this picture is too simplistic to show why.

· Our I/O thread just copies stuff between our buffers and the OS’s buffers.

· If we only had these two threads, we could have done just as well with just one thread!

· More threads

· Convenience

· Input and output were split up from the beginning to make the code simpler.

· Listening for new sockets was eventually separated from listening for input from sockets.

· Several more threads were added.

· Often one thread per module.

· Because of the infrastructure, this is often the easiest way to keep modular.

· Different tasks.

· There are several different slow tasks.

· This is where the threaded architecture shines.

· Different tasks can run at different speeds. This is like having a “10 items or less” lane.

· Real-time data

· Read from the alerts database in real-time.

· Always keep up to date and make short requests.

· Worst case, skip ahead to keep up.

· Short History

· Can take longer than the real-time stuff.

· There are some constraints on time.

· These are short, single requests.

· Long History

· Can take much longer.

· These are broken up into smaller pieces in a time-slicing-like mechanism.

· User Information

· We check the user’s credentials when he first logs in.

· We recheck periodically.

· Charts

· These are read from files, not the database.

· More – see file list.

· Speed

· Real-time data was eventually split into multiple, symmetric threads, each with their own database connection.

· This was required to take advantage of database replication.

· Even for a single database, this was required because of the overhead of sending requests to the database and back.

· Each database server has multiple CPUs.

· We still keep a small number of connections, relative to the number of users.

· This makes things a lot more complicated, but it was required to maintain our performance.

· Queues

· All threads communicate via request queues.

· Almost no locks, except for the queues!

· There are various types of queues, but mostly this is shared code.

· Basic Structure

· Get a request from the queue.

· If the queue was empty, go to sleep.

· Otherwise, perform the request.

· Repeat.

· Realistic Structure

· Most threads don’t use the basic structure.

· The problem is that some requests take too long.

· Need priorities.

· Need a way to handle requests that delete other requests.

· Two queues.

· Input queue is a FIFO.

· Second queue is some type of priority queue, varying by thread.

· First, go through the FIFO as quickly as possible.
· Some requests are finished immediately.

· Some are added to the priority queue.

· Some requests cause other requests to be deleted from the priority queue.

· Take at most one request from the priority queue before checking the FIFO again.

· Input
· Two formats

· Both send equivalent data, and are indistinguishable after being parsed.

· Default is primarily for debugging via telnet.

· Looks like the part of a URL after the question mark.

· ActiveX control immediately switches to the compressed format.

· Split into messages.

· Each message is a set of 1 or more pairs of strings.

· Name (value.

· Name cannot be null.

· Special field “command” says what to do with the message.

· Various modules can register themselves to handle various commands.

· Special field “message_id” contains the preferred id for a response message.

· There is no required connection between commands and responses.

· However, this is common enough to add it to the common code.

· 0, blank, or missing all mean don’t bother to respond.

· Individual command handlers can read any field as required.

· Output

· Two formats

· Both send the same data. Only the output unit knows which is being used.

· Default is ideal for debugging with telnet, but could be parsed by a program.

· Alternative is compressed.

· In actual use, we always select the format at the same time as we select the input format, but the code does not require it.

· Almost exclusively XML.

· Split into discrete messages.

· Messages have variable length and no fixed structure.
· Each message has an integer id, allowing the receiver direct these message to the right place.

· In practice id 0 is never used.

· In practice the id is always generated by a client request.

· The output unit can use any integer, it doesn’t care.

· Sockets

· Socket objects perform a dual role in this system.

· Sockets have the obvious role of sending data, receiving data, and waiting for the other end to be ready.

· Socket are also used to keep requests straight.

· If a socket makes a request, that request may go through multiple threads, but eventually the response has to come back to the same socket.

· Each request in a request queue contains a pointer to a socket object.

· Socket objects do not know about all of these other data.

· There is no centralized store for all data related to a socket.

· Most threads contain a data structure mapping each socket to all of the relevant data for that socket.

· Every input queue gets a special message when a socket is closed.

· Client Architecture

· The primary way to deliver the client software is in the form of an ActiveX control.

· ActiveX was always added as a wrapper around the main library.

· This was done primarily to keep the code clean.

· However, we sometimes deliver the code in other formats.

· Delivering Delphi code has proven difficult as different versions of Delphi are not completely compatible.
· I recently redid the DLL version of the library and it works well.

· The previous version was hard to update, so it was always way behind the ActiveX version.

· E*trade has a java implemention of the same thing.

· Message Ids

· For historical reasons each reply from the server must be associated with a previous message sent to the server.

· Message Ids are automatically assigned by the module which encodes the outgoing messages.

· An outgoing message can request no reply, a single reply, or any number of replies.

· Trade-Ideas Pro

· The important thing is that we made many configuration options in the ini file.

· Many changes can be made without changing the code.

· There are no hard coded references to Trade-Ideas. Like the ActiveX control, this can be completely private labeled.

· TI Pro was developed by a contractor.

· He mysteriously disappeared and I had to take over.

· The code was simple and well documented, so I won’t go into any further detail.

Server Source Files:

	ax_alert_server
	This is the main program for the C++ alerts server, i.e. API3. This is what answers the ActiveX control.

	AlertConfig.C, AlertConfig.h
	This handles all configuration requests from the client. This includes listing the options available, reading the options in various formats, and converting the request into an SQL statement.

	BitSet.C, BitSet.h
	This wrapper around an STL set allows you to see a set of Booleans a bignum.

	build_all
	Build the software. No makefile exists.

	CommandDispatcher.C, CommandDispatcher.h
	This parses the two different forms of input, and sends commands to registered listeners.

	DatabaseSupport.C, DatabaseSupport.h
	A nice set of wrappers around SQL. Primarily these take care of memory management.

	DatabaseThreadShared.C, DatabaseThreadShared.h
	These are a few items shared by the threads which read alerts from the database. This has been slowly shrinking as the code was reorganized.

	DatabaseWithRetry.C, DatabaseWithRetry.h
	This sits on top of DatabaseSupport.*. This automatically retries queries as necessary. (The PHP code is not nearly as clean because it has nothing like this.)

	DeadManTimer.C, DeadManTimer.h
	This closes a socket with no recent activity.

	Download.C, Download.h
	This copies small files to the user as requested. Mostly used for icons.

	FixedMalloc.C, FixedMalloc.h
	This base class is used for any objects which are created and deleted very often. This prevents memory fragmentation.

	GlobalConfigFile.C, GlobalConfigFile.h
	This allows us to set config items directly on the command line or in files named on the command line.

	HistoryHandler.C, HistoryHandler.h
	This goes to the database to handle history requests. See the comments in these files for more terminology regarding “history”.

	HTTP.C
	This is not currently used. It will allow us to receive and respond to HTTP requests directly, without using Apache.

	InputFramework.C, InputFramework.h
	This handles the low level end of listing to sockets and reading data from them. This is required because we don’t ever block on a read.

	LogFile.C, LogFile.h
	This is a very low level facility allowing many modules to send data to the log file.

	main.C
	This initializes the other threads.

	Messages.C, Messages.h
	This provides the common infrastructure for the messages sent from one thread to the next.

	MiscSupport.C, MiscSupport.h
	This is a collection of library routines of general C++ interest.

	NewConnections.C, NewConnections.h
	This listens for new connections from clients. This creates new sockets.

	PipeConditionVar.C, PipeConditionVar.h
	This implements something like a Windows event. Unix has something similar, but my version allows you to wait for multiple things at the same time.

	ReplyToClient.C, ReplyToClient.h
	This buffers and formats the output.

	SelectableRequestQueue.C, SelectableRequestQueue.h
	This allows you to listen for new requests, or for other types of events, whichever comes first.

	ShortHistory.C, ShortHistory.h
	See HistoryHandler.C

	ShutdownRequested.C, ShutdownRequested.h
	This is a common interface allowing a task to be interrupted and stopped by another thread. This is not used much because we don’t have an orderly way to shutdown the server. It usually runs as if it will run forever, then gets killed by another process.

	SimpleTcpIpRequest.C, SimpleTcpIpRequest.h
	Obsolete. This gives us a simple way to talk to a TCP/IP server which is similar to an HTTP server. It sends the entire request, then it reads the entire response, then it returns the results. We originally had a separate server processing doing the job of AlertConfig.*

	SocketInfo.C, SocketInfo.h
	This is the socket object described in the design, above.

	SqlStatement.h
	This is a simple interface used to handle SQL requests for alerts. It does not handle general SQL statements.

	StreamingAlertsThread.C, StreamingAlertsThread.h
	This requests the alerts from the database in real time.

	SymbolLists.C, SymbolLists.h
	This manages requests from the user to read or change his symbol lists. This also does the user specific strategies for e*trade.

	ThreadClass.C, ThreadClass.h
	This is the base class for all threads.

	UserInfo.C, UserInfo.h
	This watches users to see if they have tried to log in twice, or if their subscription has run out.

	UserRequestControl.C, UserRequestControl.h
	This is the main control for receiving alert requests from the user. It passes the real work on to StreamingAlertsThread and the two history threads, but this is the place where all the requests start.

	XmlSupport.C, XmlSupport.h
	This provides a very simple mechanism for generating XML.

	ZLibMalloc.C, ZLibMalloc.h
	This is a wrapper around FixedMalloc.* used to feed memory to zlib.

	Alert Proxy Server
	This directory is used to build our proxy server. The main server always uses a TCP/IP socket to talk to the user. If the user is behind a firewall, he may have to talk HTTP to get through. The main server knows almost nothing about this. The user talks to the proxy server, which connects to the main server as if it was a normal user. This could be used as a proxy for other things, as it is not specific to the alert server. This directory is small because this program reuses some of the infrastructure from the main C++ server.
Also, be sure to see the erlang version.

	build_all
	Rebuild all software. There is no makefile.

	P64.C, P64.h
	This is similar to uuencode or mime base 64. There is similar code in the client.

	ProxyMain.C
	Basic initialization.

	ProxyMainLoop.C, ProxyMainLoop.h
	Converts the HTTP requests to streaming TCP/IP and back.

Client Source Files:

	ActiveX
	This top level directory contains the embedded (non-web) version of Trade-Ideas. This is primarily aimed at ActiveX, but it contains other versions, too. The term ActiveX is used loosely in other places, too, especially on the server side.

	ActiveX\Simple Library
	This is a wrapper around the main library which produces a DLL. I don’t like it, but some large customers don’t like ActiveX.

	ActiveX\Simple Library Test
	This is a C++ / MFC program which tests the DLL fairly thoroughly.

	ActiveX\Delphi DLL Test
	This is a Delphi program which tests the DLL. Originally this was the main test program. However, it is now long out of date. It still works, as I’ve kept the DLL backward compatible, but it doesn’t test all the features.

	ActiveX\Exe Direct
	This is a main program which links directly to the main library. This is way, way out of date. It was used in the initial construction of the library, and should probably be deleted now.

	ActiveX\Exe Container
	This is Delphi program which can be used to test the ActiveX version of the library.

	ActiveX\Art
	These are the pictures which are compiled directly into the library. Most of the icons come from the server at run time.

	ActiveX\Docs
	Documentation, mostly for the end user. Includes a sample JavaScript application which uses the ActiveX control.

	ActiveX\Install
	This produces an install file which just installs the OCX file. This is mostly useful for 3rd party integration.

	ActiveX\ActiveX Library
	This includes wrappers around the main library to make an ActiveX library.

	TradeIdeasWindowProj1.dpr
	The main source file to build the library.

	TradeIdeasWindowProj1.ocx
	The object file version of the library.

	MemCheck.pas
	A free, third party tool for finding memory leaks. This is never used in the deliverable version, but it is very useful.

	LoadAXProperties.pas
	When the library first starts it looks for an appropriate ini file, and copies any items it can find into to connection control object.

	AlertWindow.ini
	This is a sample file to be read by LoadAXProperties.pas

	*.pas
	Additoinal pascal files exist to make wrappers around the objects in the main library to make them into ActiveX objects.

	ActiveX\Main Body
	This is what actually talks to the server and displays the results.

	AlertGrids.pas
	This is the primary control for displaying the alerts.

	AlertIcons.pas
	Requests and stores icons. Requests are stored in a stack, as new requests are more interesting than old request. Storage is tricky because there can be huge numbers of these.

	AlertPanels.pas
	This is the control that people install in their applications. This includes the alert grid and the single line at the bottom.

	AlertWindowConfig.pas
	This displays all the configuration options to the user. This retrieves the options and the current settings from the server.

	FileNameEncode.pas
	This matches a similar file on the server. Symbol names are encoded to become legal file names. This is required to store the charts.

	GenericServerConnection.pas
	This is an interface used to describe the server connection. Data is a byte stream when it passes through here.

	GetAlertData.pas
	This is the home of the server connection. This stores configuration options for the connection, and creates the connection as required. This also grabs the alert data directly, from the server connection, although other units also use the server connection.

	Gifimage.pas
	This is used to render various gif files. This is a free tool which I modified. I deleted a thread which was causing me trouble. The thread was only required for animated gifs, and we don’t use those.

	HttpTunnels.pas
	This is an implementation of GenericServerConnection.pas. It uses only HTTP data to talk to our HTTP proxy. It uses only a POST as this appears to be much more reliable than cookies.

	ListOfListsUnit.pas
	This retrieves the list of the names and ids of each of the user’s stock lists. This uses a callback so it won’t block.

	Orig gifimage.pas
	The unmodified, free code.

	P64.pas
	This encodes the outgoing data in a uuencode / mime base 64 –like way. For binary data this make more sense than the normal way POST data is encoded. The characters were specifically chosen so that if you try to do a normal URL encode/decode, nothing will change.

	Picures.pas
	The DFM contains the pictures from the ART directory. There is no code.

	SelectHistoryRange.pas
	This is a dialog box asking the user what history he wants to look at. The dialog box actively tries to enable and disable things so the user gets instant feedback if he does something wrong.

	ShareSettings.pas
	This is the “Collaborate” dialog box. There is no code.

	SimpleHttpRequest.pas
	This is a thin, simple wrapper around the http control. This primarily provides a queue for requests, and it also finds the relevant configuration settings.

	SocketServerConnection.pas
	This implements GenericServerConnection.pas in the most obvious way. The socket is non blocking. If HTTP tunneling was not an option, we’d talk directly to the socket control and never need this unit.

	StatusFrames.pas
	This displays the yellow, green, and red status lights.

	SymbolLists.pas
	This manages the communication regarding symbol lists. This aggregates multiple requests for the same list for efficiency. (This was more important in the past when we had to make sure retries were done in the right order, but it’s still nice to be more efficient.) This takes care of retries in an efficient way.

	TalkWithServer.pas
	This is responsible for taking messages to the server, putting them in the right format (including compression) then sending the data stream off to the GenericServerConnection. It also receives data stream from the GenericServerConnection, which it decompresses and turns back into individual messages. It also assigns message ids on outgoing messages, so that replies can be sent to the right listener. When the server connection is broken, it also notifies each listeners with an outstanding reply.

	UrlEncode.pas
	Standard URL encoding which is used to send commands to the server.

	WakeMeSoon.pas
	This is used by the GUI thread to call itself in the next idle event, possibly aggregating a lot of requests into one callback. It is also used by other threads to wake an object in the GUI thread.

	ActiveX\Main Body\Compress
	Compress the data going to the server, and decompress the data returning. This is all generic compression code which could be used in other places.

	*.obj
	A compiled version of zlib, which is written in C. All free.

	Orig ZLIBEX.PAS
	A wrapper allowing Pascal to access the zlib code in various ways.

	README.TXT
	Came with the free Pascal wrapper.

	ZLIBEX.PAS
	I made some additions to make the compression work in a streaming fashion. (zlib supports this, but the original Pascal code did not.)

	ActiveX\Main Body\XML
	Support for reading XML

	LibXmlParser.pas
	A free tool for reading XML. This is very low level.

	SimpleXML.pas
	A wrapper around the previous file. This produces a tree from the XML. It supports the same features of XML that my simple XML writer in the server supports. Nodes of the tree do automatic garbage collection, so you can safely pass sub trees around, and store them as needed.

Statistical Analysis Servers
· GUI

· This program is written as a standard Delphi GUI application.

· This is partially for historical reasons

· We weren’t always sure in the beginning what this project would look like.

· Most of my recent experience in this area was with GUI applications.

· This could be a desktop application

· We originally decided not to sell it that way so we could have more control.

· It provides a lot of value being on the server side because of the limited requirements on the client.

· Must of the functionality that makes this usable is only provided in the clients

· Filters.

· History.
· We’ve kept the GUI mostly for debugging.

· When developing the GUI is invaluable.

· When running as a server, it doesn’t matter what is on the screen!

· Infrastructure

· The primary infrastructure is the use of data nodes.

· Most of the data is streaming and real-time.

· Our data providers give us some callback mechanisms to tell us when data is available.

· This is usable, but you can’t build on it.

· I want something like a procedure or function, but for real-time streaming data.

· Build it up in a hierarchy.

· Reuse code.

· Break complicated code into smaller, named pieces.

· Hide the implementation details.

· Example

· I want to know the current price of a share of Microsoft’s stock.

· If I ask my data provider for that data, I will have to wait for a while.

· This is generally slow and in efficient.

· If I’m waiting on that data, I can’t request or use other data.

· Our data providers are not set up for this.

· Instead, I “find” a data node which is responsible for the price of MSFT.
· This will create a new object if necessary, or reuse an existing object if available.

· “find” is efficient and easy. Each piece of code that needs this data will call “find”.

· The data node has a reference count so deletion is automatic.

· I can request the data at any time.

· There are rules regarding threads.

· The data node can say “I don’t know”

· This is typical when you first create the data node, before it knows the answer.

· This could be a network or other problem.

· The data node will notify me with a callback whenever there is a change in the data.

· This suggests that I read the value again.

· It is possible that I will get extra notifications, but not to miss a notification.

· I don’t have to do any other initialization or know any more details.

· When I create the data node for the price of MSFT, it will probably find a data node for trade-related information for MSFT. That data node will create further data nodes to do the implementation.

· When I request the price of MSFT, this data node will probably go to the underlying data node and extract a field from a record.

· The underlying data node will notify this data node of any changes, which is how it notifies us.

· I cannot change a data node.

· When I found the data node I gave it specific parameters, such as “MSFT”.

· If I want to know the price of Dell, I have to create a new data node with “DELL” as the input.

· This is required because the data node is probably shared.

· Threads

· There is one special thread called the data node thread.

· Except as noted in the code, you can only read from a data node in the data node thread, and you will only receive notifications from a data node in the data node thread.

· There are special tools for updating the GUI in a consistent and efficient manner.

· This may be overkill.

· We only display debug / status info.

· There are tools for getting new inputs from other threads into the data node thread.

· Any object can say “call me back in the right thread”.

· This takes a thread method as an input.

· The request is automatically canceled if the requesting object is destroyed before the request is delivered.

· An object can send a broadcast message.

· This can go to any registered listener.

· There can be any number of registered listeners.

· Arbitrary strings are used to link listeners and broadcasters.
· These are often used together

· The constructor can be called from any thread.

· You can only register to listen to a broadcast message in the data node thread.

· The constructor will often call an initialization method in the data node thread to register for messages, and/or to read from other data nodes.

· The underlying mechanism that implements these to items is available directly.

· This is mostly available for historical reasons.

· Some old code still goes directly to this queue.

· You can release a data node in any thread.

· The mechanisms will automatically call the data node’s destructor in the data node thread.

· Specialization of Data Nodes

· The basic data node class knows about certain common activities.

· Creation

· Reference counts

· Destruction

· Notifying a listener.

· Transferring control into the data node thread.

· The basic data node has no actual data!

· This is specific to the specific classes.

· Different data nodes will have different types of data, so you can’t even have an interface.

· Different data nodes will have different rules for caching or re-computing data, so you can’t have any common strategy for that, either.

· Some data nodes don’t have any additional data. Signaling the notification is enough.

· Very few data nodes inherit directly from TDataNode.

· Most inherit from one of two classes which inherit from TDataNode.

· TDataNodeWithStringKey

· This provides a mechanism for implementing find.

· It is common for data nodes to have only one input, and that input is a string.

· In the example above, the price data node takes in a stock symbol as it’s input.

· In other cases sometimes we marshal more complicated items into a string and back.

· This is still easier than starting from scratch.

· It is easy to write code to find these objects.

· TGenericDataNode

· This provides a different mechanism for implementing find.

· This provides standard interfaces for creation and use.

· Find is done through a factory object.

· Factories take in a list of variants as arguments, which can include place holders and other factories.

· There are standard ways to read the data.

· GetInteger

· GetString

· …

· This is intended for more automated use.

· It is easy for a user to pick these items from a GUI.

· This base class includes a

· It is harder to write code to find a specific one of these than with TDataNodeWithStringKey

· There are generic tools for moving this data out of the data node thread.

· Layout

· At a high level the data nodes form a tree-like structure.
· Each time you request a data node, it might request more data nodes recursively.

· No cycles are allowed.

· Data nodes are shared

· The final layout is a DAG, not a tree.

· Sharing internal nodes is required for efficiency.

· There are hundreds of thousands of these nodes. There would be a lot more without sharing.

· Sharing is required to talk to some external sources.

· The details are complicated, but you only want to ask the data provider for the price of DELL once.

· Notifications go in the opposite direction as creation.

· Notifications work in depth-first manner.

· If node A has to notify nodes B and C, it will notify one of them first.

· There is no way to predict or guarantee which is first.

· Say we notify B first. Then B will get a change to notify more data nodes before we every notify C.

· It is common for data nodes to be stacked like trees, but at the top anyone can own a data node.

· Issues

· Generally this mechanism works great.

· One big issue is the problem where your data nodes look like this:

[image: image1]
· In this case data node A created data nodes B and C, each of which is sharing data node D.

· Notifications go in the opposite direction.

· Now assume that D has some new data. It will notify B. B will notify A before C knows that there is a change. A may choose to read from C, not knowing that it is out of date.
· In this case we’d prefer an update mechanism that is more like breadth first search than depth first search.

· There is no such mechanism, so these cases are handled one at a time.

· In this case the mechanism looks trivial to implement, but the graphs can get more complicated, so it is hard to solve this problem without a lot of effort at run time.

· You have to be careful that you don’t make any assumptions about what data is available.

· If you create a new data node, you can bet that it has no data initially, and you will have to wait for the first update.

· If you find a data node which has been around for a while, it will probably have data, and it might not update for a long time.

· You never know which case you have, so you have to do both.

· Even in an update, you can’t make any guarantees about who gets updated first.

· These aren’t hard to do, but if you make a mistake it can be hard to catch.

· Modules

· Source

· This is the top level.

· It contains the main program and a few miscellaneous support files.

· It also contains some related programs in sub directories.

· Alerts

· This contains the part that is specific to the alerts.

· There is a ton of support and infrastructure in other directories.

· This directory directly contains the miscellaneous files that support alerts, such as formatting them for the database.

· The definitions sub directory contains the individual alerts.

· Files

· AlertMatricies.pas

· This takes as input a set of stock symbols and a set of alert conditions to look for.

· This instantiates the objects for each item in the cross product.

· The result is fed to a queue.

· AlertSelectionWindows.pas
[image: image2.png]At ot e oY s Unesiho
TSV =
I~ PTS Down 15 Min s - O O
I~ PTS Up 30 Min [O N
I PTS Down 30 Min s - O O
I~ PTS Up 30Min [O N
I PTS Down 30 Min s - O O
T VePDiegccUp N NN P T T
I~ VWAPDiveigenceDown (NN NN ~ I
I Stepping Dawn [r ¥
[Trading Above S s - -
W {Fradig Beont NS B - -
I CossedUp — o
I Crossed Down [r - r:‘
5] Lo | AL Mo Mo | _etihielon |

· This displays all of the alert conditions, and some GUI formatting available.

· This is only used for debugging.

· [image: image9.png]8454 H00113 300 000 Trading below

8440 500113 300 000 Trading below

AlertWindows.pas

· This owns an alert matrix and displays the results.

· The actual window is only used for debugging.

· However, this window always exists, even when the program is run automatically.

· AutoAlertMonitorUnit.pas
[image: image3.png]Auto Alert Moni

I8]|
Symbol Fie: [

tion | Soption | _sobari | _Teari |
oo Vome ok

W At & Nothing " Force No History
€ Close Windows @ Auto No History
 Shatom £ o UsHity

€ Force Use History

Status: Closed (Closed 374 minutes ago.)

· This turns the software on and off.

· Originally this was the only control, however we started using this with the windows task scheduler because it was more reliable to restart the program every morning.

· This also allows more control of the process for debugging.

· AlertBase.pas

· The base class for all alert objects.

· These are generic data nodes.

· GuiAlertChoices.pas

· This lists all of the standard alerts.

· This contains way too much GUI, for historical reasons, including complicated formatting instructions.

· This also contains instructions for the automated system to start the right alerts for the right stocks.

· AlertEventUnit.pas

· Common types used by various files.

· Mysql.pas

· COTS

· We talk directly to the database for performance reasons and to get the most status back.

· PushAlerts.pas
[image: image4.png]Configure Alerts Push [

I™ Ensble Push [~ Remote [Fake

Host il
User [letserver
——

Database [mydb

Port
Sent 0
Lost 0
Waling 0

Send Test Alit

· Copies the alerts from the alert window to the database.
· Includes configuration, both automatic and user overrides through a GUI.

· Alerts\Definitions

· This contains the individual definitions of each alert.

· This also contains some classes which are used for intermediate data.

· Data was put in here if it was too specific to the alerts to be in the market data module.

· Many things were put in here because they know more about time than the market data module does.

· The web help describes what the user sees for each of these in detail.

· We purposely avoid putting implementation or design details in that help.

· Application Framework

· This includes numerous support items.

· These items are big, or refer to big items. You couldn’t just grab a small piece of these items.

· This includes a lot of GUI stuff which is overkill or only used for debugging.

· Data Structures

· We have to do a lot of this ourselves because Pascal is weak here.
· These data structures have to hold tens and hundreds of thousands of items efficiently.

· These are separate from the application framework because they are clean and you can reuse them more easily.

· Debug Tools

· This contains a lot of GUIs which were easily separated from the items they were debugging.

· These can simulate market data.

· Some of these don’t work any more.

· The underlying code was deleted as it doesn’t compile any more.

· These were kept because the GUI is nice and we may want to fix these to work with the new code.

· Keep TAL Alive Application

· This is a separate program.

· The data provider is nuts. You have to manually log in each time you want to start a program.

· As long as at least one program is logged in, you’re okay.

· So this program does nothing but log in and sit there.

· Market Data

· This is a collection of files which retrieves market data, such as the price of a stock.

· The files directly contained in this folder are very generic, and try to offer more interfaces than real work.

· This distinction is not perfect as there are so many quirks to the data.

· Almost all of the data is in the form of data nodes.

· A data provider can register itself as the data provider, and implement the interfaces.

· Market Data\TAL

· This is the actual implementation of the data retrieval.

· This talks to TAL / Realtick to get the data.

· Some of this is pretty ugly. A lot of it was redone for performance.

· Market Data\ESignal

· This was used when we got our data from eSignal.

· This probably doesn’t compile any more.

· We keep it around mostly as a reminder to keep our interfaces clean.

· Market Data\Debug
[image: image5.png]Fake Market Data

Syt P [77/77/2005 (2] [1001 56 11 =5 [730 1 Use Gurent Tine

Fundamental

Evchange: [NA5D]| Compary NemeDel Conputr Caporsion

Use FokeDaa
105
Pice [T3#5 | LastOffcisPiee [17355 | Evcharge [W650 =]
PiiSie [1000 | Totlvome: [| [lFoml & NewPirt
||t
Lot
Open: [Bid: Ask:
ik Pice [7355 | [15%
I e [100 i
Previous Cose: [10000 Exchange: [0 =] [ep =
Use FokeDaa
Automete
P TodVoune WO WHh Moy Wit

· This module can register itself as a data provider.

· This module allows the user to send any low level market data as if it came from the data provider.

· Market Data\Analytics
[image: image6.png]Candle Simulator
Symbol [BENT

Set Symbol
Min / Cande [15

Open [12
dgn [feetforder |
o [

M SondOneCand
toe [Send e Carce |
Vohme [100000

Provious Next

Open 3443 Set Histoy.
High uss
Low 3442 SendCandes
Close. L R —
Volume smu7es Tosend [1

—————

0042

· This module provides higher level formulas that are not specific to alerts.

· These are the formulas that are available in many books and web sites.

· These formulas are all based on standard candlesticks.

· This module provides a baseline for standard candlesticks which will load the historical data from a file and build new candlesticks in real time.

· Market View

· This displays data in a grid format, which is popular in trading applications.

· This is only used for debugging.

· Misc Util

· This contains all sorts of miscellaneous units which can easily be reused in other projects.

· Overnight Application

· This is a separate program.

· This is described elsewhere as the Historical Analysis Server

· Stock Window

· This displays info about a single stock.

· This is only used in debugging.

· Volume Graphs
[image: image7.png] DELL 425.752 SI

IX_IH_“R_IF;X)
" ;#*X# ***t **;¥* .
e *
¥*$xx*$¥x byt A *t$* Pty

[-[ofx]

ttx*$**$*§i**$x£

738081 [471/2005 125830PM - 11330PM | 38171 | 38063 38047 38,039 38022 v

· This implements our proprietary system of analyzing market data.

· This displays graphs for debugging, but it also provides the same data to the alerts.

· We group the data into bars

· Each bar contains a fixed number of shares.

· On an average data, each bar should have about 15 minutes worth of data.

· The important parts of the bars are the

· Start time

· End time

· Price level of the 25% line

· Price level of the 75% line

· This analysis is especially good for avoiding noise.

· We are most successful finding interesting price levels using this, then using something faster to compare to this to say when we break the price level.

· This is slow, so it’s hard to make alerts just from this.

KLOCs
	Web Server
	30
	Includes all HTML and PHP files.

	C++ server
	14
	Includes API3 server, HTML proxy server, and database semaphore manager.

	Alerts Server
	71
	Includes *.pas only. Includes real-time statistical analysis server, historical analysis server, and “keep TAL alive”

	Embedded Library
	47
	Includes *.pas only. Includes the various versions of the library and all Pascal test code.

All numbers come from linux “wc”. These are rough. I know some files are missing. But this should give some idea of the scope of the work we need to maintain.
A

B

C

D

PAGE
41

