This document describes the database schema used on the production databases at Trade-Ideas.
Detailed Descriptions

Ideally every table and every database would be described in here.

You can see the actual layout of a table at any time by typing “SHOW CREATE TABLE” and the table name. I am recording the layout of the table here, at the same time as I write comments. That way, if the table layout is out of date, you will know that the comments are probably out of date, too.

mydb

This database contains the bulk of the Trade-Ideas specific data.

The name shows a lack of creativity. This came from some examples in the mysql documentation. I started with those examples and the result slowly evolved into the production database. This name now appears in several places. Although all of them are configurable, I’d have to change them all at once and it would be a pain.

AX_windows

admin_permissions

alerts

The fields day_range and todays_range are obsolete. New code should use t_high and t_low insteady. The old code will eventually be converted over to this. Currently we have all four, until all the older alerts are gone. Once all alerts have t_high and t_low, the older fields will be removed.
alerts_daily

	Field Name
	Description

	
	

	d_symbol
	The symbol of the stock

	date
	Date of the alert

	advol
	Average daily volume over the past 10 days.

	list_exch
	Listed exchange in our internal database format

	up_days
	Days in a row the closing price has gone up. If this number is negative it means that many days down instead

	volatility
	

	range_contraction
	Days in a row the range has gotten smaller. If this number is negative it means that the range has gotten larger (expanded) for that many days.

	sma_200
	The average (mean) closing price of a stock over the last 200 trading days

	sma_50
	The average (mean) closing price of a stock over the last 50 trading days

	sma_20
	The average (mean) closing price of a stock over the last 20 trading days

	rsi_d
	Relative Strength Indicator calculated using the standard value of 14 days using Wilder’s smoothing algorithm going back up to a year. This is calculated based on the average price increase and decrease and is always in the range of 0-100. Formula: 100-(100/(1+(U/D))) where U is average price increase and D is average price decrease.

	bright_volatility
	

	high_p
	High price of the previous day.

	low_p
	Low price of the previous day.

	close_p
	Closing price of the day BEFORE the previous. This is somewhat mislabeled. This is always a day before the other _p fields.

	open_p
	Open price of the previous day.

	high_52w
	Highest price in the last 52 weeks.

	low_52w
	Lowest price in the last 52 weeks.

	std_20
	

	bunny_130
	

	consolidation_days
	

	consolidation_high
	

	consolidation_low
	

	average_true_range
	

	last_price
	Last price of the previous day. This perhaps should have been called close_p, as it is the closing price on the same day as volume_p, high_p, low_p, and open_p.

	high_life
	Lifetime high price of the stock.

	low_life
	Lifetime low price of the stock.

	volume_p
	Total volume in shares of the stock on the previous day.

	prev_put_volume
	

	prev_call_volume
	

	avg_put_call_volume
	

	debt
	Payables or current liabilities

	assets
	

	eps
	Net Income / Number of Shares Outstanding

	pe_ratio
	Price/Earnings Ratio

	revenue
	Total revenue in most recent fiscal year

	income
	Total income in most recent fiscal year

	earnings
	

	market_cap
	

	beta
	

	shares_out
	

	yield
	Always seems to be 0 in the Realtick code. Doesn’t appear to be used anywhere. This is going away in the spryware code –MF 2/3/2010

	dividend
	

auto_wl

banned_emails

CREATE TABLE `banned_emails` (

 `pattern` varchar(60) NOT NULL default '',

 `notes` text

) ENGINE=InnoDB DEFAULT CHARSET=latin1
At one time we had an automated free trial. To prevent people from abusing the free trial system we’d only allow one free trial per email. Some people abused the system by creating a new email address every week. This table lists addresses which cannot be used to create a free trial.

We got rid of the free trail system a long time ago. We are not currently using this table.

	Field Name
	Description

	pattern
	We compare the email address to this pattern with the SQL “like” operator. If the email address is like any of the patterns in the table, then the user cannot get a free trial.

	notes
	This field is available for the table maintainer, and is not used anywhere else.

banned_ips

CREATE TABLE `banned_ips` (

 `ip` varchar(15) NOT NULL default '',

 `notes` text,

 PRIMARY KEY (`ip`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This serves the same general purpose as the banned_emails table. We would not allow people to start a free trial from a banned IP address. Also, we would not allow someone to use a free trial from a banned_ip address. I think that second condition is still embedded in the live code, even though it is obsolete now.

	Field Name
	Description

	ip
	We compare the IP address of the HTTP request to this field. If the address matches any of the values in the table, then the user cannot get a free trial.

	notes
	This field is available for the table maintainer, and is not used anywhere else.

candles_5m

CREATE TABLE `candles_5m` (

 `symbol` varchar(20) character set latin1 collate latin1_bin NOT NULL default '',

 `end_time` datetime NOT NULL default '0000-00-00 00:00:00',

 `last_price` float default NULL,

 `high` float default NULL,

 `low` float default NULL,

 PRIMARY KEY (`symbol`,`end_time`),

 KEY `end_time` (`end_time`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table contains standard 5 minute candle data for most of the stocks that we track. This is used primarily by the OddsMaker.

Unlike the similar data that is used by many of the alert creation algorithms, we do not truncate the table when we see a period without data. If there were any trades during the 5 minute period for the specified stock, we will have a corresponding entry.

	Field Name
	Description

	symbol
	The stock symbol we are watching.

	end_time
	This is the time when this candle ends and the next one starts.

	last_price
	This is the last price we saw during the period.

	high
	This is the highest price we saw during this period.

	low
	This is the lowest price we saw during this period.

candles_d

CREATE TABLE `candles_d` (

 `symbol` varchar(20) character set latin1 collate latin1_bin NOT NULL default '',

 `date` date NOT NULL default '0000-00-00',

 `open` float default NULL,

 PRIMARY KEY (`symbol`,`date`),

 KEY `date` (`date`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This is aimed at the OddsMaker. This shows data about each stock for each day that it traded.

	Field Name
	Description

	symbol
	The stock symbol we are watching.

	date
	This is the date of this candle.

	open
	This was the opening price for this symbol for this day. This is the official value reported by the exchange.

email_demos
CREATE TABLE `email_demos` (

 `email` varchar(50) NOT NULL default '',

 `id` int(11) default NULL,

 `start` datetime NOT NULL default '0000-00-00 00:00:00',

 PRIMARY KEY (`email`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This is a list of email addresses of people who have received a free trial. This prevents a person from requesting multiple free trials. This table is obsolete because we no longer give out free trials this way.

	Field Name
	Description

	email
	This was the email address that we verified to start the demo. This was the value of the email field in the users table at the time that the user requested a free trial. However, that field can change. We can add to this table, but we never changed the values in this table.

	id
	This is the user who requested the free trial. This corresponds to the id field in the users table.

	start
	This was the time when the free trial was awarded.

email_sms_log

CREATE TABLE `email_sms_log` (

 `timestamp` datetime NOT NULL default '0000-00-00 00:00:00',

 `user_id` int(11) NOT NULL default '0',

 `sent_to` varchar(50) NOT NULL default '',

 KEY `timestamp` (`timestamp`,`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This allows us to monitor the use of our alerts via email feature. For the most part this is only viewed by the back office.

There is also one special entry which allows the email program to save its sate and to recover from that place after restarting. If the timestamp and user_id fields are both 0, then this is the special case. In that case the sent_to field is the id of the last alert which has been processed by this program so far.

This table is associated with /var/www/Supporting_Scripts/TradeIdeasEmailSms.php on the web server.
	Field Name
	Description

	timestamp
	This is when we sent the alert.

	user_id
	This is the user who requested the alert. This field corresponds to the id field of the users table.

	sent_to
	This is the address that we sent the alert to. Initially this is copied from the sms_email field of the users table. But that field can change. This table records the value that we used, and never changes.

email_sms_strategies

CREATE TABLE `email_sms_strategies` (

 `user_id` int(11) NOT NULL default '0',

 `strategy_id` tinyint(3) unsigned NOT NULL default '0',

 `recent_count` tinyint(4) NOT NULL default '0',

 `last` datetime NOT NULL default '0000-00-00 00:00:00',

 `settings` blob NOT NULL,

 `title` tinyblob NOT NULL,

 `body` tinyblob NOT NULL,

 `enabled` enum('Y','N') NOT NULL default 'N',

 PRIMARY KEY (`user_id`,`strategy_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This is where we store active requests for the alerts by email feature. This feature is implemented in /var/www/Supporting_Scripts/TradeIdeasEmailSms.php on the web server. This feature is different from other types of Trade-Ideas because it is completely implemented on the server. So the database has to store information which would usually be stored on the client.

	Field Name
	Description

	user_id
	This is the user who owns this strategy. This field corresponds to the id field of the users table.

	strategy_id
	This is used to distinguish one strategy from the next. A user can set up multiple strategies. This is not explicitly visible to the end user, but we always present the strategies in order.

	recent_count
	This field is not currently used.

The idea is that we might allow 3 alerts every hour, rather than 1 alert every 20 minutes.

	last
	This is the last time that we’ve sent an alert. This is required because we don’t want to send alerts too often.

	settings
	This is what we are looking for. This is in the standard collaborate format.

	title
	These provide the title and the body of the email. These can include special codes which are interpreted by the server program.

	body
	

	enabled
	This provides a quick way to disable a strategy without deleting it. This is required because a person might want to turn a strategy on and off from a cell phone, where he don’t have enough power to create a new strategy from scratch or to save and load a strategy from disk.

execution_messages
CREATE TABLE `execution_messages` (

 `timestamp` datetime NOT NULL default '0000-00-00 00:00:00',

 `ti_user_id` int(11) NOT NULL default '0',

 `remote_user_name` varchar(32) NOT NULL default '',

 `action` enum('cancel','market_order','limit_order','stop_order','other') NOT NULL default 'other',

 `shares` int(10) unsigned NOT NULL default '0',

 `direction` enum('buy_long','buy_to_cover','sell_short','sell_long','n_a') NOT NULL default 'n_a',

 `source` varchar(32) NOT NULL default '',

 `vendor_id` varchar(50) NOT NULL default ''

) ENGINE=InnoDB DEFAULT CHARSET=latin1

We use this table to track the execution messages sent by the robot to a broker. We would use this to verify the amount of payment that we received from the broker. This is not enough information to create an exact bill ourselves.

	Field Name
	Description

	timestamp
	This is the time of the event.

	ti_user_id
	This corresponds to the id field of the users table. This could be 0 if the user did not log in to Trade-Ideas.

	remote_user_name
	This is the username at the brokerage.

	action
	This says what type of action we asked the broker to do, i.e. new order, cancel order.

	shares
	This is the size of the order.

	direction
	Buy vs. sell.

	source
	This says what created the order. For example, was this done by the robot or by the user? If it was the user, which window? Etc.

	vendor_id
	This field is used to track which version of the robot this is. Indirectly this tells us which broker. Unfortunately this comes from the main program, so it doesn’t work well for the embedded version of the robot.

feed_config

CREATE TABLE `feed_config` (

 `feed_id` int(11) NOT NULL default '0',

 `category_id` int(11) NOT NULL default '0',

 `settings` blob NOT NULL,

 `last_update` datetime default NULL,

 PRIMARY KEY (`feed_id`,`category_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This is used to drive KnightWatch_Data.php and KnightWatch_Config.php.

These were based on AcquireMedia.php and TrackData.php. Those were successful ways of sending large quantities of data to another server. KnightWatch_Data.php is similar, but it can be configured at run time by a user who is not at Trade-Ideas. To accomplish this, all configuration information is stored in the feed_config table.

	Field Name
	Description

	feed_id
	This allows us to have multiple consumers with the same or similar scripts all using the same table.

Currently there is only one value, 1, which is used by Knight. Eventually there could be another table listing these values, and other information about the feed, like the password.

	category_id
	This is how we distinguish between one configuration and the next.

The word “category” comes from the XML that is used to send the results to the end user. That word has been used for a long time, and has been given to external clients, so it will never change.

This is part of a unique key. This allows us to overwrite an old setting using a GUI in the obvious way. If you change a row in the GUI, the GUI reports the change using this id.

There are a fixed number of these records in the database. The user can change the individual records using the GUI. And administrator could add or delete records, if we need more or fewer, using the mysql command line client.

	Settings
	These contain the settings in the format exported by DataConfig and used in the view_mru table. The GUI will probably accept additional formats and convert them all into the canonical form.

We use “” to mean that there are no alerts. That is how we disable a category.

We do not allow null values. That makes it simpler to update the last_update field. I can see if some has changed by just using =.

Note that we do not have a separate field for the category name. That comes from the window name in the settings.

	last_update
	This is the timestamp of the last change.

This is only for real changes. If a user tries to submit something which is already in the database, we ignore it. Presumably the GUI will only have one change button, and that will submit all of the rows at once. But we only update the rows that actually changed.

format_lists
CREATE TABLE `format_lists` (

 `id` int(11) NOT NULL auto_increment,

 `name` varchar(30) NOT NULL default '',

 `description` text NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
The user can select colors and styles for the display of his alerts. Rather than giving him full control, we give him a small set of choices, where each choice contains an entire set of styles. This table contains the names and user friendly descriptions of these styles. This table has never changed. We could add to this at some time, but a few places use a specific item from this list.
	Field Name
	Description

	id
	These items are typically referenced by number. If a program always uses the same formatting, this number will be hard coded. If the user can select from the list, we store this id. This id is also used as a reference into the format_values table.

	name
	This is a short description given to the user.

	description
	This is a longer description which is also available to the user.

Note that at least one option available to the user only exists in this table, not in format_values. The user can select that option, and all fields will have the default formatting.
format_values

CREATE TABLE `format_values` (

 `list_id` int(11) NOT NULL default '0',

 `alert_type` varchar(10) NOT NULL default '',

 `cell_desc` text NOT NULL,

 `pre_desc` text NOT NULL,

 `post_desc` text NOT NULL,

 PRIMARY KEY (`list_id`,`alert_type`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table includes the actual formatting instructions to go with format_lists. We constantly add to this as we get new alert types. The instructions are primarily HTML, but they are simple enough that the non-html clients can decipher them.
	Field Name
	Description

	list_id
	This describes which formatting scheme the user wants. This matches the id field in the format_names table.

	alert_type
	Each alert type can have different formatting. This is the standard short/internal form that we use for the alert types. For example, if you see RU in this table, you can look up http://www.trade-ideas.com/Help.html#RU or http://static.trade-ideas.com/Alerts/RU.gif for additional information.

	cell_desc
	This desribes the background of the cell. Originally there was just pre_desc, and post_desc, but these were insufficient to draw a background color or pattern.

This must take one of three forms.

It can be a color, in the standard X windows/web format. Specifically it must start with a #, and have 6 hex digits after that.
It can be a background pattern. In that case it must start with “Textures/” and end with “.gif”. Note, originally this was more flexible, allowing you to find the pattern at any url, but now we limit this to one directory. This was required to make it work well for different versions of the client.

It can be blank. We have never explicitly added a row where this is blank. But a lot of times we look up values and there is not matching row. In this case we use the default background color. We never use the default background color in any other case because someone might set their default color to the same as the foreground color that we have chosen.

	pre_desc
	Originally pre_desc was, quite literally, a prefix, and post_desc was a suffix. These were just concatenated on to the message that we wanted to display.
This limitation did not cause any problems. We had been using this on the web for a long time before adding TI Pro. We did not have to delete anything from this table. In practice, we didn’t use a lot of fancy formatting.
To make this work on other platforms, in addition to the web, we limited the values that were allowed in these fields.

A field can optionally start with to make it bold.

A field have a color specified like this: “” .

As in cell_desc, this value could be blank. Users should expect that sometimes. That means to use the default foreground color. But if you wanted that, you’d just use the default value, and you wouldn’t add a row to the database at all.

	post_desc
	These are just the closing tags to match pre_desc. They should always be “” or “”

This is what’s currently on Will. We expect to upgrade the servers with this or something very close.

CREATE TABLE `mydb`.`format_values` (
 `list_id` int(11) NOT NULL default '0',
 `alert_type` varchar(10) NOT NULL default '',
 `cell_desc` text NOT NULL,
 `pre_desc` text NOT NULL,
 `post_desc` text NOT NULL,
 `font_color` text,
 `font_bold` tinyint(1) NOT NULL default '0',
 `bg_color` varchar(7) NOT NULL default '',
 `bg_texture` text,
 PRIMARY KEY (`list_id`,`alert_type`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

This table includes the actual formatting instructions to go with format_lists. We constantly add to this as we get new alert types. The instructions are primarily HTML, but we have added font_bold, font_color, bg_color, and bg_texture fields to strip the HTML out to make it easier to use the formatting in various ways (Raw HTML, CSS, etc...). The old values (pre_desc, cell_desc, post_desc) should be gradually phased out. but they are simple enough that the non html clients can decipher them.
	Field Name
	Description

	list_id
	This describes which formatting scheme the user wants. This matches the id field in the format_names table.

	alert_type
	Each alert type can have different formatting. This is the standard short/internal form that we use for the alert types. For example, if you see RU in this table, you can look up http://www.trade-ideas.com/Help.html#RU or http://static.trade-ideas.com/Alerts/RU.gif for additional information.

	cell_desc
	This desribes the background of the cell. Originally there was just pre_desc, and post_desc, but these were insufficient to draw a background color or pattern.

This must take one of three forms.

It can be a color, in the standard X windows/web format. Specifically it must start with a #, and have 6 hex digits after that.

It can be a background pattern. In that case it must start with “Textures/” and end with “.gif”. Note, originally this was more flexible, allowing you to find the pattern at any url, but now we limit this to one directory. This was required to make it work well for different versions of the client.

It can be blank. We have never explicitly added a row where this is blank. But a lot of times we look up values and there is not matching row. In this case we use the default background color. We never use the default background color in any other case because someone might set their default color to the same as the foreground color that we have chosen.

	pre_desc
	Originally pre_desc was, quite literally, a prefix, and post_desc was a suffix. These were just concatenated on to the message that we wanted to display.

This limitation did not cause any problems. We had been using this on the web for a long time before adding TI Pro. We did not have to delete anything from this table. In practice, we didn’t use a lot of fancy formatting.

To make this work on other platforms, in addition to the web, we limited the values that were allowed in these fields.

A field can optionally start with to make it bold.

A field have a color specified like this: “” .

As in cell_desc, this value could be blank. Users should expect that sometimes. That means to use the default foreground color. But if you wanted that, you’d just use the default value, and you wouldn’t add a row to the database at all.

	post_desc
	These are just the closing tags to match pre_desc. They should always be “” or “”

	font_color
	This is the font color (i.e. foreground color) in #RRGGBB hex format.
This deprecates the tag in pre_desc and the tag in post_desc. Combined with font_bold it deprecates post_desc and pre_desc completely.

	font_bold
	This is a boolean/tinyint (1 or 0) value that denotes whether the font should be bold.
This deprecates the tag in pre_desc and the tag in post_desc. Combined with font_color it deprecates post_desc and pre_desc completely.

	bg_color
	This is the color of the background in #RRGGBB hex format. This is the exact same format as in cell_desc when using a background color.
This field combined with bg_texture deprecates cell_desc completely.
Additionally, you can now specify both a texture and a bg_color, which allows you to have a fallback in cases where the background texture does not load.

	bg_texture
	This is location of the background texture. This is the exact same format as in the cell_desc when using a background texture image.
This field combined with bg_color deprecates cell_desc completely.
Additionally, you can now specify both a texture and a bg_color, which allows you to have a fallback in cases where the background texture does not load.

hidden_settings
CREATE TABLE `hidden_settings` (

 `wl_include` varchar(50) NOT NULL default '',

 `name` varchar(25) character set latin1 collate latin1_bin NOT NULL default '',

 `settings` blob NOT NULL,

 UNIQUE KEY `wl_include` (`wl_include`,`name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
We allow some people to set up “hidden settings”. For example, if you sign up for VCM’s free trial, you can use the VCM settings, but you can’t see the exact settings. This table maps a special code in these settings which the end user could see, to the real settings used by the server.

	Field Name
	Description

	wl_include
	This corresponds to the field of the same name in the users table. In large part this is a safety mechanism. You cannot use the hidden settings unless you have the correct wl_include settings on your account.

	name
	This (combined with the wl_include field) is used to select the settings. When the user tries to run a strategy, the server starts by looking up the window name of that strategy in this table. If the server finds a corresponding entry in this table, then it uses the setting from this table to find alerts.

This name is usually similar to the name which is actually displayed in the window’s title bar. However, it can be anything. In particular, some of the window names were too long to fit into this field, show they were shrunk.

	settings
	These are the settings which will actually be used. The server uses these settings to find alerts. The server also extracts the window name from these settings, not from the original settings, and the client will display the name from here. This field is in the standard collaborate format.

holidays

CREATE TABLE `holidays` (

 `day` date NOT NULL default '0000-00-00',

 `closed` set('US','Canada','London') NOT NULL default '',

 `half_day` set('US','Canada','London') NOT NULL default '',

 `notes` blob NOT NULL,

 PRIMARY KEY (`day`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This table lists the days when the market is closed. This was added primarily for use with the OddsMaker, although it might be helpful in other places.

Currently the OddsMaker checks if there were any alerts on a day to determine if that day was a trading day. That is a good first estimate, but it can fail if we are doing testing on a weekend or holiday. And it can fail if different markets have different holidays. And it can fail for other unexpected reasons, too.

E*TRADE specifically complained about the extra days. In our daily summary we say 0/0 if there were no trades matching the user’s criteria but we believe it was a trading day. We don’t display anything for weekends and holidays. Before adding this table we were wrong occasionally.
This will become more important when we talk about longer hold times in the OddsMaker. If you say that you want to hold something for 5 days, that should mean 5 trading days.

I have purposely filled in this table with every week day for the next several years, even though we don’t yet know which of these days will be holidays. This way, if I am unable to update the holidays in time, the system will assume every weekday is not a holiday. This would be closer to correct than assuming that every day is a holiday.

I have not listed weekends, because I do not expect any trading on weekends. However, if I add weekends, and mark them as holidays, that should not break any code.

Source of holiday schedules:

· http://www.nasdaqtrader.com/Trader.aspx?id=calendar
· http://www.tsx.com/en/about_tsx/market_hours.html
· http://www.londonstockexchange.com/en-gb/about/cooverview/businessdays/
	Field Name
	Description

	day
	This is the date in question.

	closed
	This set says which markets are closed on the given day. If a day does not exist, that would be the same as this field having all bits set.

	half_day
	This set says which markets are closed for half a day. We are not using this field at this time. However, it could be very useful in the overnight processing. I’m adding this field now, because the data for this and for the “closed” field come from the same place.

	notes
	This field is aimed at the maintainer of this table. It can include things like the name of the holiday.

hosts

CREATE TABLE `hosts` (

 `host_name` varchar(20) NOT NULL default '',

 `IP` varchar(20) NOT NULL default '',

 `last_update` datetime default NULL,

 PRIMARY KEY (`host_name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This is a special purpose table allowing us to track computers which do not have a fixed ip address. There is a script on the web server that allows you to reference one of these computers as if it had a fixed name and address, and another script which allows that computer to check in. This is a complete side issue, and not part of any production work.

As an example, you can type http://www.trade-ideas.com/LoadBalance.html?cluster=webstart3&port=8800&file=Videos/Main.html into your browser. The Trade-Ideas web server will look up webstart3 in the table, and transparently redirect you somewhere else.

	Field Name
	Description

	host_name
	This is the name that we export to the rest of the world. In the example above, this field is “webstart3”. This name is chosen only for outside users to see, and has no other meaning. (In this particular example it’s a joke, since we don’t use Java webstart.)

	IP
	This is the IP address of the remote computer. This is where we will send the user.

	last_update
	This is the last time the remote computer checked in to tell us its current IP address. Ideally we should get an update every 5 to 10 minutes. If this is more than 25 minutes old, we ignore the record. There is no explicit way to delete an old record, but this is close. If the user tries to connect, and the last_update time is too old, we can show them a friendly error message.

initial_emails

CREATE TABLE `initial_emails` (

 `email` varchar(50) NOT NULL default '',

 `user_id` int(11) NOT NULL default '0',

 `timestamp` datetime NOT NULL default '0000-00-00 00:00:00',

 PRIMARY KEY (`email`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
When a user first signs up for a new account, we send them a brief email introduction. A lot of people create multiple accounts. We only send one email per email address. This table takes care of that.

	Field Name
	Description

	email
	This field must be unique. If a user creates an account, we check here to see if the email has been used before.

	user_id
	We save the user id of the account, but we don’t use that information at this time.

	timestamp
	This is the time when the user got his initial email. We don’t use this information at this time.

link_destination

CREATE TABLE `link_destination` (

 `user_id` int(11) NOT NULL default '0',

 `link_type` varchar(20) NOT NULL default '',

 `arg1` varchar(255) default NULL,

 `arg2` varchar(255) default NULL,

 PRIMARY KEY (`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This is used by the web based client to store the users’ external linking preferences. For example, if he sees a stock in our software, he might click on the link and go to Yahoo! Finance. This should really be part of the users table. I first created this long ago, and I mistakenly thought that this information would cause the users table to change too often. There are several references to this table in seldom used web scripts that I don’t want to retest.

	Field Name
	Description

	user_id
	This key field allows us to associate a user with his settings. Each user will have 0 or 1 rows in this table.

	link_type
	This maps directly to the rule for selecting a destination. For example, “yahoo” means go to yahoo finance. See Chart.php for the complete list of options.
Notice that there are a lot of link_types that map to the same action. These are still different in the GUI. “NDX Pro”, for example is just a white labeled version of InstaQuote. So are several others. We are keeping this illusion alive for the end user, while performing the same task on the back end for each of them.

	arg1
	These have different meanings depending on the link type. For example, the “custom” type concatenates arg1, the stock symbole, and arg2, in that order.

	arg2
	

This is not used at all in TI Pro. For one thing, we keep information about linking on the local computer. What’s more, this linking feature was so complicated, and wasn’t really used much, so we made things simpler in TI Pro.

For example, we created the Redi Specific connector based on their API. But it was a pain to use. We used the generic connecter to talk to Redi because it worked better than going through their API.
list_permissions

CREATE TABLE `list_permissions` (

 `user_id` int(11) NOT NULL default '0',

 `owner_id` int(11) NOT NULL default '0',

 KEY `by_user` (`user_id`,`owner_id`),

 KEY `by_owner` (`owner_id`,`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This allows people to share symbol lists. user_id is the user who wants to access the list. owner_id is the owner of the list. A user can always see his own lists. user_id 0 refers to all users.

	Field Name
	Description

	user_id
	This is the user who wants to see the list. 0 means all users.

	owner_id
	This is the person who owns the list. This person can create, edit and delete lists. This matches the user_id field in the symbol_lists table and the symbols_in_lists table.

Sharing allows you to attach an alert window to a symbol list, or to view the contents of the symbol list, as if it were your own. When you create, edit, or delete a list, it’s always your own list.
manual_subscription
CREATE TABLE `manual_subscription` (

 `id` int(11) NOT NULL auto_increment,

 `user_id` int(11) NOT NULL default '0',

 `first_month` varchar(10) NOT NULL default '',

 `each_month` varchar(10) NOT NULL default '',

 `oddsmaker` enum('Y','N') NOT NULL default 'N',

 `valid_until` date NOT NULL default '0000-00-00',

 `subscr_id` varchar(127) NOT NULL default '',

 `notes` blob NOT NULL,

 PRIMARY KEY (`id`),

 KEY `user_id` (`user_id`,`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table allows people to create subscriptions with unique or “special” requirements. Each time a new subscription is created, our servers must validated the subscription, and make sure that it is something we have allowed. Otherwise people could potentially look at our subscription links and modify the links to be better for them. They could request a normal subscription for $0.01 / year, for example. The standard deals are hard coded into the IPN_common.php. But if we want to create a “special” deal for someone, we go to Special_Subscription.php in the back office to generate a link for the customer. That page will record the deal in this table, so we can validate it later.

Note: This table is called “manual_subscription” for historical reasons. Originally there was a lot more “manual” work for us in this process. In fact, this table helps remove a lot of that manual work.

After the customer creates a subscription, we check this table to see what we need to do with the customer. It is possible that there are multiple offers all listing the same Trade-Ideas user id. Our software looks for one that is legal and matches the PayPal subscription. If there was more than one that could apply, the software arbitrarily chooses one. It’s up to the back office user to avoid any problems.
	Field Name
	Description

	id
	This is a standard auto-increment / primary key field. This field makes it easy for us to modify a specific record. Eventually there are plans for the GUI to allow you to delete a specific record; that feature will also require this field.

	user_id
	This corresponds to the id field in the users table. Currently this mechanism requires each invitation to be associated with a specific user.

That may change in the future. There is room to move all of the deals into this table. Future deals would not be hard coded in the PHP code. That would only make sense if we also allowed a deal to be used more than once. See the subscr_id field, below.

	first_month
	This is the price that the user pays the first month. This should be blank if the user will pay the same the first month as every other month.
We assume that all subscriptions will be done on a monthly basis. We tried more complicated things in the past and they only caused confusion.

This should be in exactly the same format that PayPal uses. In particular, there should always be exactly two numbers after the decimal point. We expect an exact, byte for byte match between this field and what PayPal sends us.

	each_month
	This is the amount that the user pays each month. More precisely, it corresponds to the “a3” field in the PayPal request.
This should be in exactly the same format that PayPal uses. In particular, there should always be exactly two numbers after the decimal point.

	oddsmaker
	If this field is set to “Y”, and the user successfully starts this subscription, our software will automatically enable the OddsMaker for this user.
Note: There is nothing corresponding to this value in the URL that we give to the user. PayPal does not see this value. That makes the process much simpler. Presumably other fields could be added the same way. That includes pro vs. non pro and a list of exchanges. That could make our code a lot cleaner in the face of a large number of options.

	valid_until
	Each of these records has an expiration date. For simplicity this is only a date, not a date and time. This is set by the back office user and enforced by the PHP script which handles the IPN request. Presumably we could automatically delete old ones.

	subscr_id
	This field tracks which invitations have been accepted. Each row of this table represents exactly one invitation. Currently, each invitation can only be used once. If this field is the empty string, the invitation has not yet been used. If this is not blank, then the invitation has been used. We fill this field in with a copy of the PayPal subscription id. That can be useful for a back office users.

	notes
	This is a description of the deal. This is only visible to the back office user, not to the customer. This can say things like “TDA rate” or “restarting old subscription”.
There is no need to say “OddsMaker,” or “No OddsMaker”, or to say the name of the person making the offer, as the back office scripts are already recording that information.

mobile_settings
CREATE TABLE `mobile_settings` (

 `user_id` int(11) NOT NULL default '0',

 `page` enum('streaming','overnight','toplist') NOT NULL default 'streaming',

 `settings` blob NOT NULL,

 `hash` varchar(32) character set latin1 collate latin1_bin NOT NULL default '',

 PRIMARY KEY (`user_id`,`hash`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

The mobile version of Trade-Ideas allows you to configure alerts and other requests on a normal computer, and use them on a cell phone. The basic idea of TI mobile is that the config window is too hard to render or use on the cell phone, but the resulting data is not. This table is where we store the settings for later use.
	Field Name
	Description

	user_id
	This is the user who saved this strategy. This corresponds to the id field in the users table.

	page
	This is the type of data we are looking at. For example, normal streaming alerts, or a top 10 list.

	settings
	The format of the settings depends on the type of data. For streaming alerts this is the standard collaborate format. The other pages use a similar format.

	hash
	This prevents a duplicate setting to be stored. This is an md5 hash of a combination of the page and the settings.

monitor_alive

CREATE TABLE `monitor_alive` (

 `name` varchar(50) NOT NULL default '',

 `schedule` enum('master','slave','alert_server','24x7','overnight','unknown') NOT NULL default 'unknown',

 `last_update` datetime NOT NULL default '0000-00-00 00:00:00',

 `disabled` enum('Y','N') NOT NULL default 'Y',

 PRIMARY KEY (`name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This table is used by various web pages to report the status of various programs and machines. Many programs have to continually send keep alive messages to this table.

	Field Name
	Description

	name
	This describes the process being monitored in a user friendly way. The process at the far end must specify this value, as each process is monitored separately

	schedule
	This describes the type of test we are performing.
The term “schedule” is slightly misleading. Some things, like the database, should be up 24 hours a day, while others, like the alerts servers, are only on at certain times of day. However, this field specifies more than just that. The way we test a database is completely different from the way we test an alert server.

Values:

· alert_server – Must send periodic messages during specific hours.

· master – This is a database which must respond and must be set up for replication in the roll of a master. The name field is the name of the machine running the database.

· slave – This is a database which must respond and must be set up for replication in the roll of a slave.

· overnight – This is specifically made for our overnight process. It is expected to run once per day at a particular time, and not on weekends. Originally we tried to just look at the real data from that process and see if it was recent, but using this table allows us to detect a process that failed when it was half way done. In particular, this allows us to split the overnight work up into separate processes.

· 24x7 – not currently used. This is designed for a simple system that should notify us constantly, and should never be off. I have considered a task running on each machine to send these messages.

· unknown – not currently used.

	last_update
	This is the time when we last heard from this process. Many processes will update this field in this table on a periodic basis to say that they are alive.

	disabled
	If disabled is set to “N” then everything works as described. If disabled is set to “Y” then the status scripts will ignore this entry.
This is useful when you make changes. You can temporarily turn off checking for a task without deleting all of the rules for that task. When you are ready to turn the checking back on again, you don’t have to remember all the settings.

A process will typically send an update statement to the database periodically to say that it is alive. If we don’t care about that process (perhaps we are running it in a development context) then the message is ignored. Also, the various processes don’t have to know much about this table. They only fill in their name and the current time.

We use the database in this way to make status reporting faster and more reliable. Most of the data is pushed to us. If something is down, we know because the record is old. If we tried to ping someone when there was a status request, we might have to wait longer if there was a problem with that process or machine.
nasdaq_location

CREATE TABLE `nasdaq_location` (

 `date` date NOT NULL default '0000-00-00',

 `user_id` int(11) NOT NULL default '0',

 `location` varchar(255) NOT NULL default '',

 UNIQUE KEY `date` (`date`,`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This table provides data for a possible NASDAQ audit. It contains data which we don’t have to report on a daily basis. In particular it contains a copy of the NASDAQ location field.

	Field Name
	Description

	date
	This says when we took the measurement. This is only precise to the month. We may update this table multiple times per month, but we only save the last value. Our reports are only generated monthly.

	user_id
	This corresponds to the id field in the users table.

	location
	This corresponds to the nasdaq_location field in the users table.

nasdaq_user

CREATE TABLE `nasdaq_user` (

 `date` date NOT NULL default '0000-00-00',

 `user_id` int(11) NOT NULL default '0',

 `status` enum('pro','non-pro','non-pro-us','undeclared','immune') NOT NULL default 'pro',

 UNIQUE KEY `date` (`date`,`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This table records the daily use of our product by anyone who has access to real-time NASDAQ data. This is used to compute our report to NASDAQ each month. We are basically writing our own bill.

	Field Name
	Description

	date
	This says when we took the measurement. If the person used our product at least once during the month then we are liable for payment to NASDAQ.

	user_id
	This corresponds to the id field in the users table.

	status
	This corresponds to the status field in the users table.

nyse_user

CREATE TABLE `nyse_user` (

 `date` date NOT NULL default '0000-00-00',

 `user_id` int(11) NOT NULL default '0',

 `status` enum('pro','non-pro','non-pro-us','undeclared','immune') NOT NULL default 'pro',

 UNIQUE KEY `date` (`date`,`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table has the same purpose and structure as the nasdaq_user table. Note that some people, especially professional traders, may have access to NASDAQ data but not NYSE data, or vice versa.

	Field Name
	Description

	date
	This says when we took the measurement. If the person used our product at least once during the month then we are liable for payment to NASDAQ.

	user_id
	This corresponds to the id field in the users table.

	status
	This corresponds to the status field in the users table.

oddsmaker_use

CREATE TABLE `oddsmaker_use` (

 `id` bigint(20) NOT NULL auto_increment,

 `timestamp` datetime NOT NULL default '0000-00-00 00:00:00',

 `user_id` int(11) NOT NULL default '0',

 `settings` text,

 `direction` enum('up','down') default NULL,

 `exit_condition` text,

 `end_time` datetime default NULL,

 PRIMARY KEY (`id`),

 KEY `timestamp` (`timestamp`),

 KEY `user_id` (`user_id`,`timestamp`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table is updated every time a user runs the OddsMaker. It is used only to display statistics for the back office.
	Field Name
	Description

	id
	This field is used as a primary key and has no other value.

	timestamp
	This is when the OddsMaker run started.

	user_id
	This corresponds to the id field in the users table.

	settings
	This is the entry criteria, in collaborate form.

	direction
	Long or short.

	exit_condition
	If you requested to exit on another alert, this would have the exit settings in collaborate form. Otherwise, this would be blank. We don’t copy all of the options from the OddsMaker configuration window, but we know that this option can require a lot more resources.

	end_time
	This is when the OddsMaker completed.

E*TRADE specifically asked for this data, but they are not currently using it.

This field can be null for several reasons.

· The user hit cancel.
· The run was canceled by other means, like shutting down the client.

· The run is still in progress.

· The run was done before we started collecting this data.

one_time_payments

CREATE TABLE `one_time_payments` (

 `txn_id` varchar(25) NOT NULL default '',

 `msg_id` int(11) default NULL,

 `timestamp` datetime default NULL,

 PRIMARY KEY (`txn_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Using PayPal, people can set up subscriptions, or they can make one time payments. People can make a one time payment before their last payment expires; they will get the full time they paid for regardless of when they made the payment. The way PayPal sends us messages we can and often do get duplicates. So, when we see a payment message we need a way to know if we’ve already credited the user’s account for this payment. This table keeps track of which payments we’ve already processed.

	Field Name
	Description

	txn_id
	This is the transaction id generated by PayPal. If this is unique, then we have received a new payment. If this is not unique, then we’re looking at a duplicate of a previous payment.

	msg_id
	This is our own internal message id. This is a one up counter which we increment each time we receive a message from PayPal. If we receive the same message more than once, each one will get it’s own message id.

This corresponds to the msg_id field in the raw_ipn_field table and the id field in the raw_ipn_msg table.

	timestamp
	This is the time when we received the message.

other_payments

This table was set up to track payments from Reality Trader. It could be used by other people, but it isn’t. They aren’t really using the mechanism right, so the table doesn’t offer much value. The idea was to use this to bill them.

Currently we don’t have any real mechanism in place to properly bill Reality Trader.
raw_2co_field

This table was set up as a copy of raw_ipn_field. The difference is that raw_ipn_field works with PayPal while this works with 2 check out. We never made any tools to do much with 2 check out, because most of our business came through PayPal. Then 2 check out decided the did not want us as a customer any more, so we haven’t added any new data to these tables in a while, and we haven’t added any new tools to use this data.
raw_2co_msg

This table was set up as a copy of raw_ipn_msg, but for use with 2 check out. See the description of the raw_2co_field table for more information.
raw_ipn_field

CREATE TABLE `raw_ipn_field` (

 `msg_id` int(11) NOT NULL default '0',

 `number` int(11) NOT NULL default '0',

 `name` varchar(30) character set latin1 collate latin1_bin NOT NULL default '',

 `value` varchar(255) character set latin1 collate latin1_bin NOT NULL default '',

 PRIMARY KEY (`msg_id`,`name`),

 KEY `by_field_value` (`name`,`value`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table contains the bulk of the information we get from PayPal. IPN is what they call their messaging system.

Each message from PayPal consists of a series of name/value pairs. We store each name/value pair as one row of this table. We do not do any interpretation of the data before adding it to this table. This way we record all fields, not just the ones that we were expecting. If we update our software to take advantage of a new field, we can always play back old messages and we will have access to that field.

The idea is that you can join this table with itself to access multiple fields. The result will be one row per message. The index on this table will allow you to quickly build these rows, and find any rows matching your criteria. For example you could ask for the time and transaction id of any message with a specific subscription id. This would be handled quickly and efficiently.

	Field Name

	Description

	msg_id
	This is how you group the fields of a PayPal message into a single message. The message_id is a one up counter that we maintain. This field corresponds to the id field in the raw_ipn_msg table.

	Number
	This field specifies the order of the fields in the PayPal message.

	Name
	The name of the field in the PayPal message.

	Value
	The value of the field in the PayPal message.

raw_ipn_msg

CREATE TABLE `raw_ipn_msg` (

 `id` int(11) NOT NULL auto_increment,

 `from_ip` varchar(17) NOT NULL default '',

 `timestamp` datetime NOT NULL default '0000-00-00 00:00:00',

 `success` enum('Y','N') NOT NULL default 'N',

 `error_msg` varchar(255) default NULL,

 `from_script` varchar(127) NOT NULL default '',

 `devel` enum('Y','N') default 'N',

 PRIMARY KEY (`id`),

 KEY `timestamp` (`timestamp`,`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
The primary purpose of this table is to maintain our one up count of message ids. This field also contains various information about the message aside from the content. The actual content is stored in the raw_ipn_field table.

	Field Name

	Description

	Id
	This is the one up counter that we assign to each message. This is how we refer to a message. This is how we keep the field for each message together.

	from_ip
	This is the source of the HTTP request.

	Timestamp
	This is the time when we received the message. Generally the code should use the time in the message, not this field. If a message is duplicated, the content will be identical, but our id will be different, and our timestamp will probably be different.

	Success
	The code which processed messages will use these fields to report most problems. These fields are only used to generate back office reports.

	error_msg
	

	from_script
	This is the program which reported the message. That’s mostly useful for debugging. A message is often delivered to us in two different ways. When the user clicks to return from PayPal to our site, we get a copy of the message. But PayPal also sends messages directly to us, without going through the client’s computer. These are handled by the same library, but by different top level scripts.

	Devel
	This flag is a way to hide messages from the back office. In the early days there were more test messages than real messages. This can only be set manually.

signup_special

This table had special instructions for various special offers. A special link could give people a longer free trial. This table is not currently used as we no longer offer automatic free trials.
special_login

CREATE TABLE `special_login` (

 `login_type` varchar(32) character set latin1 collate latin1_bin NOT NULL default '',

 `to_server_password` varchar(32) character set latin1 collate latin1_bin NOT NULL default '',

 `from_server_password` varchar(32) character set latin1 collate latin1_bin NOT NULL default '',

 `prefix` varchar(5) character set latin1 collate latin1_bin NOT NULL default '',

 `authorization_expires` datetime NOT NULL default '0000-00-00 00:00:00',

 `authorization_code` varchar(128) NOT NULL default '',

 `class` varchar(20) NOT NULL default '',

 `exchanges` smallint(5) unsigned NOT NULL default '0',

 `oddsmaker_free` bigint(20) default NULL,

 PRIMARY KEY (`login_type`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table is used to allow E*TRADE to automatically create and manage accounts. The requirements are generic enough that it could apply to other brokers, too, but currently only E*TRADE does this.

We give Scottrade a list of usernames. We generate these in bulk. They assign the TI user names to their users in some automated fashion. E*TRADE wanted to do things in a different way. They send us an obfuscated version of the user’s E*TRADE account name. We keep track of which E*TRADE accounts correspond to which TI user account.
We keep track of the association by using a prefix. For example, if E*TRADE sends us the code “abc”, then we use “ET:abc” as the TI user name. If this user name does not already exist, then we will create it.

This table contains various administrative details needed to make this work. In particular, this table would allow us to do the same thing with other brokers. Otherwise, all of these settings could be hard coded.

	Field Name
	Description

	login_type
	This value comes from the broker. This is how we can distinguish between brokers, and how we can send the bill to the correct broker for each user.

	to_server_password
	These are used by the protocol to allow the client and the server to recognize each other. This prevents just anybody from requesting an account and billing it to E*TRADE

	from_server_password
	

	Prefix
	This is the prefix used in the TI username. This does not include the colon.

	authorization_expires
	These values are copied from this table to the users table whenever we need to create a new TI user account.

	authorization_code
	

	Class
	

	Exchanges
	

	oddsmaker_free
	

sponsor_authorize

This table is obsolete. This was a way for brokers to give away our product to people and we’d bill the broker. This was an idea that we’ve tried to use with several people and although there was interest, it never went anywhere.
stock_screener_recent

CREATE TABLE `stock_screener_recent` (

 `id` bigint(20) unsigned NOT NULL auto_increment,

 `start_time` datetime NOT NULL default '0000-00-00 00:00:00',

 `settings` blob NOT NULL,

 `settings_md5` varchar(32) NOT NULL default '',

 `ip` varchar(20) NOT NULL default '',

 PRIMARY KEY (`id`),

 UNIQUE KEY `settings_md5` (`settings_md5`),

 UNIQUE KEY `ip` (`ip`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table provides a list of settings which people have recently used in the end of day stock screener. The indexes allow the PHP code to prevent any one set of settings from appearing too many times. We also limit the number of settings visible from any one user.

	Field Name
	Description

	id
	This is the primary key and not used for anything else.

	start_time
	This is the time when someone requested these settings.

	settings
	This is the configuration of the stock screener. This is in a standard format which is similar to the collaborate format.

	settings_md5
	This is the md5 hash of the settings field. This is required because the settings field is too long to use as an index directly.

	ip
	This is the IP address of the computer which made this request. The IP address is a proxy for the user.

strategies

CREATE TABLE `strategies` (

 `list_name` varchar(30) NOT NULL default '',

 `id` int(11) NOT NULL default '0',

 `name` varchar(60) NOT NULL default '',

 `settings` blob,

 `html_help` blob,

 `text_help` blob,

 `short_help` blob,

 `icon` char(3) default NULL,

 `user_must_modify` enum('Y','N') NOT NULL default 'N',

 `sub_list` varchar(30) default NULL,

 UNIQUE KEY `list_name` (`list_name`,`id`),

 KEY `name` (`name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This table describes the various predefined strategies which are visible to the user on the web site and in TI Pro. The strategies visible to a user appear in a tree. The user is given a list of strategies, but that list can also contain pointers to other lists. Different users can see different strategy trees. These trees can share sub-trees.
Potentially there could be a loop, with one list of strategies indirectly pointing to itself. The software which reads from this table should be prepared for that case, and it should not crash. TI Pro, for example, will keep track of which lists it has displayed, and will ignore any request to display the same more than once for a user. However, it is bad style to create such a loop. That should be avoided.

The end user cannot choose on his own where to start in this tree. See the top_level_strategies table for a list of valid entry points.

Currently the web site only displays a single list, not a tree. That is likely to change at some future time.

Use the tools in the back office to view and modify this table. Not all features present in this table can be modified in the back office yet. Features will be added as needed.

Be sure to also see the hidden_settings table. That table is typically used in conjunction with this one.

	Field Name
	Description

	List_name
	Each node of the tree is a list of settings and sub-lists. Each of these nodes or lists has a name, which is recorded in this field.
This name is completely internal. This field is used to find items in this table. This is not displayed to the customer. In fact, two different customers can see the same list with different names. See the name field for the user visible name.

	Id
	This field, when combined with the list_name, defines a unique row in this table. This combination can allow a back office user to describe a specific row to be modified or deleted.
This field is also used to set the order of the strategies when they are displayed for a user. The strategy or sublist with the lowest id number is always displayed first.

The end user does not directly see the list_name or id field.

	Name
	This is the name of the strategy or sub-list as shown to the end user. This is often the same as the window name for the strategy. However, this is often a shortened version of that name.

	Settings
	These are the settings for a strategy. These should take the standard “O=…” form. This field should not start with “http://”. In many places the GUI will add that prefix on display and will remove it before sending a request back to the server.

	Html_help
	This is a description of the strategy or sub-list which is displayed to the end user. This is only used by the web site. This should be valid HTML. Note that most of the strategies are only visible in TI Pro, not on the web.

	Text_help
	This is a description of the strategy or sub-list which is displayed to the user in TI Pro. This should correspond to the html_help field, but there is no tool for automatically keeping these in sync. This field should be plain text. If this field contains characters above 127, the meaning is not defined.
Every strategy or sub-list should have some help. But that’s a question of style. The software will work even if this is blank. Many times the strategies come from outside sources, and they don’t give us all that we need.

	short_help
	This field is not currently used. A long time ago the web GUI had room for a short description of a strategy in addition to the values stored in the name and html_help fields. This hasn’t been true in a long time, but we preserved those values when we had them.

	Icon
	This describes the way we display the strategy. In TI Pro, every strategy has an icon next to it; this field says which icon to use. On the web, this describes the border around the strategy. This controls both the color and the shape of the border. The web GUI is optimized for the case where each + strategy has a corresponding – strategy immediately below it. However, that is not required.
The following values are currently defined. New values may be added in the future. The software will do a decent job of providing a default icon if it doesn’t understand this value.

· + - Bullish strategies.

· - - Bearish strategies.

· ! – Neutral strategies.

· * - Interesting or highlighted strategies.

This is no code defined for a sub-list. The preferred code in that case is NULL. TI Pro will automatically use the right icon for sub-lists, regardless of what is in this field.

	User_must_modify
	This is a special way to handle the “Start from Scratch” strategy. The web and TI Pro each have a special way of handling that. You can bring this strategy up in the configuration window. It doesn’t make sense to display this strategy.

	sub_list
	This should be NULL for a normal strategy. To add a sub-list to this list, this field should name the sub-list. This is the internal name of the list, which can be found in the “list” field of other items in this table.
If this value is not null, then the icon and settings fields are both meaningless. They should be null.

symbol_info_f

CREATE TABLE `symbol_info_f` (

 `symbol` varchar(20) character set latin1 collate latin1_bin NOT NULL default '',

 `company_name` varchar(50) default NULL,

 `exchange` varchar(4) default NULL,

 `protected` enum('Y','N') NOT NULL default 'N',

 PRIMARY KEY (`symbol`,`protected`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table contains data primarily aimed at the stock info pages. This is also used by the older stock screener, which could not be customized. This is, for the most part obsolete. Newer work should use the alerts_daily table instead. Some items do not translate easily, so the old code continues to use this table. This table was created before alerts_daily exists.
This table works in conjunction with symbol_info_t. Originally “f” stood for fundamental data, and “t” stood for technical analysis. That’s not a perfect description, but the basic idea is right. The technicals are always computed every night by the servers. This symbol_info_f allows an administrator to override certain values, so they will not be overwritten by the servers.

	Field Name
	Description

	symbol
	This is the standard key used to look up data for a particular stock symbol.

	company_name
	This is an English description of the company name. i.e. DELL (“Dell Computer Corporation.” Some of these names are better than others. Some are completely blank. At one time the data provider was having a lot of trouble with the names for some important indexes. That’s the main reason why I split up the table this way. There’s room to clean these names up a lot more, but it’s too much effort, so most of these come directly from the data provider as is.

	exchange
	This is the exchange where the security is listed. This is the standard code that we use throughout the software. These codes are based mostly on the codes used by eSignal.

· $NDX – Index

· AMEX – American Stock Exchange

· CME – Chicago Mercantile Exchange

· NYSE – New York Stock Exchange. Includes ArcaExchange.

· CAT – Canada
· CAV – Canada

· OTC – NASDAQ Over the counter.

· PINK – Pink Sheets

· NASD – NASDAQ

· BB – Bulletin Board

· [blank] – unknown. Typically this is a stock that we’re requesting for historical reasons, but it’s moved to a different exchange or something.

	protected
	This is “N” for rows that are automatically culled from the data provider. This is “Y” for rows that are manually entered. Some stocks appear both ways. People reading from the table should first look for a row labeled “Y”. If that’s not available, then we should look for a row labeled “N” as a second choice.
This was a terrible system. Ideally there should have been only one row per symbol. The process that enters the data into this table should be a little smarter. That way the various processes reading from this table can be much simpler.

symbol_info_m

CREATE TABLE `symbol_info_m` (

 `symbol` varchar(20) character set latin1 collate latin1_bin NOT NULL default '',

 `company_name_m` varchar(50) default NULL,

 `exchange_m` varchar(4) default NULL,

 `web_site` varchar(255) default NULL,

 PRIMARY KEY (`symbol`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table was designed to go with symbol_info_f and symbol_info_t. It has never really been used. This is a collection of data which is all manually entered. It is designed for a displaying data on the stock info page.

	Field Name
	Description

	symbol
	This is the standard key used to look up data for a particular stock symbol.

	company_name_m
	These contain the company name and the exchange code. These are meant to replace the protected flag in symbol_info_f. A client could do a left join on this table. The client would use these fields, unless they were null, then they’d use the fields found in symbol_info_f. The “_m” ending makes it easier to migrate existing code. Overall this system would be a lot easier to use than the existing system.

	exchange_m
	

	web_site
	This is the web site of the company for this system. This is not available from the data provider. This would have to be entered manually. According to some sources, having useful links like these on a web page will help your Google rating. And it might be useful for a user.

symbol_info_t

CREATE TABLE `symbol_info_t` (

 `symbol` varchar(20) character set latin1 collate latin1_bin NOT NULL default '',

 `volatility` double default NULL,

 `ad_vol` int(11) default NULL,

 `sma_200` double default NULL,

 `sma_50` double default NULL,

 `sma_20` double default NULL,

 `last_price` double default NULL,

 `up_days` double default NULL,

 `correlation_symbol` varchar(20) character set latin1 collate latin1_bin default NULL,

 `correlation_m` double default NULL,

 `correlation_r2` double default NULL,

 `f_correlation_m` double default NULL,

 `f_correlation_r2` double default NULL,

 `range_contraction` int(11) default NULL,

 `bunny_130` double default NULL,

 `consolidation_days` int(11) default NULL,

 `std_20` float default NULL,

 `average_true_range` float default NULL,

 `last_update` datetime default NULL,

 PRIMARY KEY (`symbol`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table contains data primarily aimed at the stock info pages. This is also used by the older stock screener, which could not be customized. This is, for the most part obsolete. Newer work should use the alerts_daily table instead. Some items do not translate easily, so the old code continues to use this table. This table was created before alerts_daily exists.

This table works in conjunction with symbol_info_f. Originally “f” stood for fundamental data, and “t” stood for technical analysis. That’s not a perfect description, but the basic idea is right. The technicals are always computed every night by the servers.
	Field Name
	Description

	symbol
	This is the standard key used to look up data for a particular stock symbol.

	volatility
	This is the standard 15 minute volatility of the stock.

	ad_vol
	This is the average daily volume. Some tables list this as “advol”, without the “_”.

	sma_200
	This is the 200 day SMA of the closing prices.

	sma_50
	This is the 50 day SMA of the closing prices.

	sma_20
	This is the 20 day SMA of the closing prices.

	last_price
	This is the closing price from the day that we did the overnight analysis.

	up_days
	This is the number of up days for the stock. See the video help for the exact definition.

	correlation_symbol
	The overnight servers compare the closing prices of each stock to a variety of other stocks to look for similar patterns. We only record the stock with the highest correlation. We might not record any stock if the best one is not good enough. This value is used in the sector breakout/breakdown alerts. It also looks good on the stock info page.

	correlation_m
	This goes with the correlation symbol. This is the slope of the regression line, known a s”m” in the typical mathematical formulas. If the comparison stock price goes up 1%, we expect this stock’s price to go up m%.
Note that there is no correlation_b. We use the formulas that assume b = 0.

	correlation_r2
	This goes with the correlation symbol. This is the standard r squared value which says how good the correlation is. This value is always positive, even if m is negative.

	f_correlation_m
	These are similar to the previous two fields, except that every stock is compared to QQQQ. These can be null if the comparison is not considered interesting or useful. The “f_” prefix originally meant futures. We switched from the NASDAQ futures to QQQQ, but the result should be the same.

	f_correlation_r2
	

	range_contraction
	This is the same value used in the range contraction filter.

	bunny_130
	This is the same value used in the linear regression divergence filters.

	consolidation_days
	This is the same value used in the consolidation filters.

	std_20
	This is the 20 day standard deviation. It is used in multiple places, including the Bollinger bands.

	average_true_range
	This is the standard daily average true range formula for the stock.

	last_update
	This is the time when we last updated this record. Active stocks are updated every night. There is nothing which automatically deletes old stocks. Instead, we display this information on the stock info page. And we automatically filter out stocks from the stock screener if this value is too old.

symbol_lists

CREATE TABLE `symbol_lists` (

 `name` varchar(30) NOT NULL default '',

 `user_id` int(11) NOT NULL default '0',

 `id` int(11) NOT NULL default '0',

 PRIMARY KEY (`user_id`,`id`),

 KEY `user_id` (`user_id`,`name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This contains the name of every symbol list. This is only used for the GUI. This is not used in processing the alerts.

There should not be any symbols in a list unless there is a name for this list. (symbols_in_lists contains the symbols.) You can, however, have an entry in this table without any symbols. That’s what an empty symbol list looks like. This is not enforced by the database, but by the C++ and PHP code.
Transactions are used to keep this table and the symbols_in_lists table consistent even if multiple clients are all making changes at once.

	Field Name
	Description

	name
	This is the name of the list which is visible to the end user.

	user_id
	This corresponds to the id field in the users table.

	id
	This corresponds to the list_id field in the symbols_in_lists table. This will always be a positive number.

Originally this was an auto-increment field. That’s not available in a InnoDB table. Now we do that in the C++ and PHP code. We use id 0 as a semaphore. This should never be available outside of the transaction. It is created and then deleted in the same transaction.

This value is stored in a strategy, when that strategy is linked to a symbol list.

This value is not directly shown to the user. Typically we sort by this value when we display the list of names to the user. And the id shows up in the settings field, which isn’t completely hidden from the end user. But we don’t advertise this number.
The API points more emphasis on this value. Code is simplified if it knows a specific list id, rather than looking up a list name to find it’s id.

symbols_in_lists

CREATE TABLE `symbols_in_lists` (

 `symbol` varchar(20) character set latin1 collate latin1_bin NOT NULL default '',

 `list_id` int(11) NOT NULL default '0',

 `user_id` int(11) NOT NULL default '0',

 UNIQUE KEY `user_id` (`user_id`,`list_id`,`symbol`),

 UNIQUE KEY `symbol` (`symbol`,`user_id`,`list_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
This contains all of the symbols in each user’s symbol lists. This is used in the standard requests for real-time and historical alerts. This can also be used in other places, such as some of the scans for PPSN.
Notice some odd indexes on this table. The obvious indexes did not work well when you attached a strategy to multiple symbol lists, especially multiple symbol lists from multiple owners. Performance was dreadful. Typically when processing realtime alerts we start by looking for the symbol, then we check for the other fields. That could break down if enough people made enough lists with the same symbol in them. But that’s never happened, and the other failure was very common even a long time ago.

	Field Name
	Description

	symbol
	This is standard symbol field.

	list_id
	This corresponds to the id field in the symbol_lists table. See the description of that table for constraints on this value.

	user_id
	This corresponds to the id field in the users table.

top_level_strategies

CREATE TABLE `top_level_strategies` (

 `external_name` varchar(90) NOT NULL default '',

 `source` enum('client_request','white_label') NOT NULL default 'client_request',

 `list_name` varchar(30) NOT NULL default '',

 PRIMARY KEY (`source`,`external_name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table says which strategies are available to a particular user. The strategies table lists the individual strategies. This table says where a user must start when he traverses the strategies table.

Currently this only applies to TI Pro. The web site is hard coded to point to certain specific places in the strategies table. The web site does not show different strategies to different users. There are no immediate plans to change this. The strategy list feature is part of our white label process. Despite our initial attempts, all white label customers use TI Pro, not the web. When they do use the web, they use completely customized pages (like PPSN) which are hard coded to their needs.

	Field Name
	Description

	external_name
	This table matches external criteria describing the user to the internal name of a list. The exact meaning value of the external criteria should match what’s in this field. The exact criteria we are looking at is defined by the source field.
Note that many of these values look like URLs. Originally the custom strategies were all defined in XML files hosts on web pages. Later this information was moved to the database. To minimize the number of changes to the client, some of the values were kept the same. Also, some properties in the ActiveX control still refer to this as a URL.

	Source
	There are three ways for the server to decide which strategy tree to give to a user.

· First, the server looks up the user’s white label in this table. If a row of this table has a source of “white_label” and an external_name which matches the user’s while label, then we use that row. This rule has to have the highest priority because we added it most recently. Most users covered by this rule, would also be covered by the rule below. An example is VCM, which gives some strategies to people on the free trial, and more to people who are paying.

· The client software will request a specific strategy tree. In TI Pro this request starts with the ini file. The client will always specify something, with the default being the empty string. If the first rule doesn’t match anything, then we look for a row in this table with a source value of “client_request” and an external_name matching the request.
· If the first two rules do not apply, the server will look for a rule will external name being the empty string and source being client_request. The assumption is that the client was misconfigured. So we assume that the client made the default request.

	list_name
	This corresponds to the “list_name” field of the strategies table. The top level list of choices the user sees, will be the list in the strategies table with this name.

tt

“tt” is the name I use for random temporary tables that I create when I’m using mysql interactively. (This is not an acronym for “temporary table”. This name goes way back to temporary files used at another job, long before I was familiar with mysql.)

When I need more than one table I use other names starting with the “tt” prefix. All names that start with “tt” are reserved for this purpose. Do not create any permanent tables with a name like that.
user_cookie

CREATE TABLE `user_cookie` (

 `cookie_id` int(11) NOT NULL auto_increment,

 `cookie` varchar(50) NOT NULL default '',

 `user_id` int(11) NOT NULL default '0',

 `requested_from` varchar(16) NOT NULL default '',

 `invalidated_from` varchar(16) default NULL,

 `cookie_creation_time` datetime NOT NULL default '0000-00-00 00:00:00',

 `cookie_valid_start` datetime NOT NULL default '0000-00-00 00:00:00',

 `cookie_valid_end` datetime NOT NULL default '0000-00-00 00:00:00',

 `confirmed_from` varchar(16) default NULL,

 `unique_id` varchar(10) default NULL,

 PRIMARY KEY (`cookie_id`),

 KEY `current` (`user_id`,`invalidated_from`),

 KEY `by_valid` (`invalidated_from`),

 KEY `by_unique_id` (`unique_id`),

 KEY `cookie_valid_start` (`cookie_valid_start`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
The user_cookie table performs two separate duties. This is a log of each user’s usage. And this is used to ensure that a single user cannot use the software in two places at the same time.
In the web client the cookie is a random sequence of characters used to identify the session. This is changed at least once an hour to prevent cheating. Originally I kept a complete history of the cookies because I thought it was required to keep track of all of old cookies to ensure this algorithm worked correctly. In fact, we only need the current cookie and one more.

However, this is still a convenient place to keep a usage log. This way we can see when the user switches to a different version of the software or something like that.

TI Pro uses a slightly different system to keep people from cheating. It uses the last alert id as part of the session id. That guarantees that the session key is constantly changing. However, it will still update this table whenever starting a new session, and again every hour. This ensures that someone can’t use the web product and TI Pro at the same time. And both products will record history in the same way.
	Field Name
	Description

	cookie_id
	This is used as the primary key, and nothing else of interest. This is a simple auto-increment field. This counts the total number of cookies, not the number of cookies per user. That’s because InnoDB does not allow auto-increment on multiple keys.

	cookie
	In the web product this is a semi-random set of characters representing a session. This is used for security in the web product to keep two people from sharing an account. TI Pro, instead, puts the version number into this field. The users table contains the session info for TI Pro.

	user_id
	This corresponds to the id field in the users table.

	requested_from
	This is the ip address of the client which created this row.

	invalidated_from
	Only one row per user can be current, because only one session per user can be active. When a client creates a new row, it has to invalidate any other rows which were valid.

We index on this column. This is a big table. It can be useful to search for rows where this field is null. That will give you only the most current row for each user.

	cookie_creation_time
	This is the time when we created this row.

	cookie_valid_start
	In the web product, sometimes we introduce a delay. If things look suspicious, we cut off the old session, but the new one is not available for use for 60 seconds. This feature is not used in TI Pro, so this field will always be the same as the cookie_creation_time field.

	cookie_valid_end
	A row can never be valid for more than an hour. For the web product, that keeps you from manually copying the cookie from one computer to the other. For all products this helps us keep a complete list of how much time the user has spent using the product.

	confirmed_from
	Confirmation says that we sent the new cookie to the client, and the client sent it back to the server at least once. If we didn’t require the confirmation step, a simple network error could look like someone was cheating. As long as the new cookie has not been confirmed, you can still use the old cookie to request a new one. This is the IP address of the client which confirmed the cookie.

	unique_id
	This is only set by the ActiveX control. This is a code which tries to identify the specific computer making the request. It’s far from perfect, but it can be useful. We display this in the back office. More precisely we show a list of computers user accounts which were all accessed from the same computer.
This was originally added to prevent people from abusing our free trial system. However, it is sometimes useful even now that we don’t offer automatic free trials.

user_deltas

CREATE TABLE `user_deltas` (

 `user_id` int(11) NOT NULL default '0',

 `change_id` int(11) NOT NULL auto_increment,

 `field_name` varchar(20) NOT NULL default '',

 `ip` varchar(16) NOT NULL default '',

 `old_value` varchar(100) NOT NULL default '',

 `new_value` varchar(100) NOT NULL default '',

 `time` datetime NOT NULL default '0000-00-00 00:00:00',

 PRIMARY KEY (`change_id`),

 UNIQUE KEY `user_id` (`user_id`,`change_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This is where we track changes to each user’s account. This covers almost all changes made by any PHP code. It does not cover changes made by any other means. This table exists strictly to be displayed in the back office; it is not used for any processing.

Originally each piece of code wrote it’s own query to update this field. However, that quickly became hard to do, so now almost all PHP code used the update_user_info() function to update the users table and this table at the same time.
	Field Name
	Description

	user_id
	This corresponds to the id field in the users table.

	change_id
	This is used to make a unique key. This can also be used to determine the order of changes.

	field_name
	This is the name of a field in the users table.

	ip
	This is the IP address of the HTTP request which initiated this request. This might come from the end user, the back office, or PayPal.

When a change is made in the back office, this is the only way to determine who made the change.

	old_value
	This is the value before we made the change.

Note: if the new value is a constant and the new value is the same as the old value, there will not be an entry for this change.

Note: The back office will obfuscate the password field rather than displaying it. That is done by the display procedure. The password is stored in this table in plaintext.

	new_value
	This is the value after we made the change. This might be a constant or it might be an SQL expression. The user will have to look at the value to determine which is which.

	time
	This is the time when the change was made.

user_strategies
CREATE TABLE `user_strategies` (

 `user_id` int(11) NOT NULL default '0',

 `strategy_id` int(11) NOT NULL default '0',

 `settings` blob NOT NULL,

 `description` blob NOT NULL,

 PRIMARY KEY (`user_id`,`strategy_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table is specifically aimed at E*TRADE. They allow users to save their windows. But where TI Pro saves similar things in local files, E*TRADE insisted on saving this on our server.

The ActiveX server will list these along with the standard strategies and the user’s recent strategies. TI Pro would naively display these if they existed. However, TI Pro doesn’t have any way to create these. And it is unlikely that someone would see this because the E*TRADE login would be different from the TI login.

	Field Name
	Description

	user_id
	This corresponds to the id field in the users table.

	strategy_id
	This, combined with the user_id, makes the primary key. It is not displayed to end users.

	settings
	This are the settings in the standard “O=…” format. It should not start with “http://”.

	description
	This is the name in the format that the end user will see it.

users
CREATE TABLE `users` (

 `username` varchar(37) character set latin1 collate latin1_bin NOT NULL default '',

 `password` varchar(16) character set latin1 collate latin1_bin default NULL,

 `id` int(11) NOT NULL auto_increment,

 `creation` datetime default NULL,

 `real_name` varchar(50) default NULL,

 `email` varchar(50) default NULL,

 `initial_ip` varchar(16) default NULL,

 `format_id` int(11) NOT NULL default '1',

 `font_face` varchar(100) NOT NULL default 'Arial',

 `font_size` varchar(15) NOT NULL default '8pt',

 `wl_include` varchar(50) default NULL,

 `us_mail` enum('Y','N') NOT NULL default 'Y',

 `other_mail` enum('Y','N') NOT NULL default 'N',

 `where1` tinyint(4) NOT NULL default '0',

 `where2` varchar(255) NOT NULL default '',

 `user_type1` tinyint(4) NOT NULL default '0',

 `user_type2` varchar(255) NOT NULL default '',

 `authorization_type` enum('sample','paypal','paypal_once','paypal_us','employee','salesman_demo','other_payments','initial_demo','none') NOT NULL default 'none',

 `authorization_code` varchar(128) NOT NULL default '',

 `authorization_expires` datetime NOT NULL default '0000-00-00 00:00:00',

 `AX_last_id` bigint(20) default NULL,

 `AX_previous_id` bigint(20) default NULL,

 `AX_sequence_number` int(11) NOT NULL default '1',

 `class` varchar(20) NOT NULL default '<DEFAULT>',

 `valid_exchanges` smallint(5) unsigned NOT NULL default '964',

 `status` enum('pro','non-pro','non-pro-us','undeclared','immune') NOT NULL default 'non-pro-us',

 `nasdaq_agreement` datetime default NULL,

 `nasdaq_location` varchar(255) default NULL,

 `oddsmaker_free` bigint(20) default '10',

 `oddsmaker_total` bigint(20) NOT NULL default '0',

 `nyse_agreement` datetime default NULL,

 `nyse_occupation` varchar(255) default NULL,

 `nyse_company_name` varchar(255) default NULL,

 `nyse_company_address` varchar(255) default NULL,

 `nyse_employment_functions` varchar(255) default NULL,

 `paid_exchanges` smallint(5) unsigned NOT NULL default '989',

 `sms_email` varchar(50) default NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `username` (`username`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table contains the bulk of the administrative information that we have about each user.

The PHP code seldom uses this table directly. It almost always uses the update_user_info() function to modify this table, and the loggedIn() function to read this table. See the user_deltas table for related information.

	Field Name
	Description

	username
	This is the name that the user has to type in when he logs in.

For the most part, all external sources (i.e. client software, PayPal) use the username to identify a user. For the most part only the id is used internally (i.e. keys for joining tables).

This is one of the few fields which is case sensitive.

The length of this field was determined in part by E*TRADE. When E*TRADE gives us a user name, we have to convert that into valid Trade-Ideas username. Since we have no control over their user names, we simply add the prefix “ET:” to their user name to create a valid TI user name.

Notice that the “:” is a reserved character. When a normal user makes up a username, he cannot include a :. The special_login table contains the rest of the prefix.

	password
	This is the user’s password. It is stored in plain text. This is field is case sensitive.

	id
	This is how we describe the user internally. This serves the same basic purpose as the username, but it is more efficient because it is an integer.
We seldom display the id. This is done in the back office, by popular request. It gives an indication of how many signups we see, and the order in which people sign up.

Most other tables use the name “user_id” rather than “id”. This is helpful when writing the SQL to join two tables on this field.

For historical reasons, the id rather than the username is stored in an HTTP cookie. This works great for normal use of our web client. But it causes problems for some people who are trying to write code that talks to our HTTP server. I wrote http://www.trade-ideas.com/Samples/GetUserId.html to help ameliorate that problem, but no one seems to like it. It might be possible to change the HTTP stuff to use the username, when the id field is missing, but I just hate to change that much old, working code.

	creation
	This is the time when the account was created. It is null for a small handful of people who signed up before this field existed.

	real_name
	We ask the users for this when they sign up. It can be very helpful in the back office. It is not always correct. We don’t use it for much, except when we display it in the back office. At one time we inserted this into bulk emails, but is was incorrect too much and it made things look bad sometimes.

	email
	The user has to provide an email address when they sign up. We make some effort to see that this is valid, but that’s far from perfect. This may be missing for accounts that we create in bulk.

	initial_ip
	This is where the user signed up. This is only used in the back office. This is useful to find “weasels” who try to get multiple free trials, and “spammers” who create a lot of bogus accounts.

	format_id
	This selects the colors and patterns used to display alerts.

This corresponds to the id field in the format_lists table, and to the list_id field in the format_values table.
This field is only used by the web client. The ActiveX client uses those other tables to format the output. But it uses a different way of saving the user’s choice. In particular, it allows each window to have a different choice.

	font_face
	This is how the web client displays the alerts. The ActiveX client allows each window to have different fonts, and it does not store that information in the database.

	font_size
	

	wl_include
	This field is mostly used to say where a user came from.

For example, if someone posts a link on their web site, they put a special code in the URL. That code gets translated and put into this field. See the auto_wl table for information about that translation. It is also common to change this field in the back office.
This stands for “white label include”. The original idea was that we could create a white labeled version of the software for various brokers. Their customs would see their logo at the top, in addition to ours. (We would use the PHP “include” statement to do that.) A lot of people used to ask for that type of functionality. We stopped doing that because no one actually used it. The mechanism is still there, but we haven’t added new white labels, or we’ve made invisible white labels.
This field was useful for tracking users, so we still use it. We will typically create an empty include file for a new white label. That will satisfy the software, but it takes less time than making a good looking white label.

The legal values in this field should correspond to the files in /var/www/WhiteLabel on the web server. If the wl_include field is “XXX” (for example) the web server will look for a file called /var/www/WhiteLabel/XXX.txt. The back office will also look in that directory to get a list of legal values.

	us_mail
	This is where a user says that he does or does not want to be on the mailing list.

	other_mail
	This is where a user says whether or not we may share his email with others. We’ve never actually done that. We’ve removed the option from the web site, because no rational person would select that check box.

	where1
	This corresponds to the drop down box saying where the user found out about us. See the PHP code for a translation between these integer values and their English descriptions.
For the most part these values are pure crap. Users are still saying that they’ve seen us in a magazine where we haven’t advertised in years. (Presumably this option was popular because of its position in the list.)

	where2
	This field corresponds to the text field next to the drop down list above. The data in this field is slightly better, perhaps because people are too lazy to type a lot of non-sense.

	user_type1
	This corresponds to the drop down list on the web site. See the PHP code the meanings of these values.

	user_type2
	This corresponds to the text field next to the previous drop down.
For the most part this field and the previous three are displayed in the back office but not used anywhere else.

	authorization_type
	This says why the person is allowed to use the software. I.e. he sent us a check, or he’s using PayPal. The back office allows you to view and change these. See the back office for a detailed description of each possible value.

This field can be set in the back office, or automatically. It is used by a lot of the automated software. As a general rule, it is best to leave the computer alone if it is managing an account, such as a PayPal subscription. Setting this field (or the next two) to an invalid value can cause problems.

	authorization_code
	The exact meaning of this depends on the value of the previous field. For example, if a user has a PayPal subscription, this field will contain the subscription id.

	authorization_expires
	This is the time when the user’s authorization expires. All accounts expire. If you send a check for a year, you will expire in a year. A free trial always has an expiration date.

A monthly subscription will often set this to 45 days in the future. The extra days are used in case PayPal was slow. For example, if a credit card was declined, PayPal will warn the user and try again twice more. In many cases PayPal tells us exactly when to cut someone off.

	AX_last_id
	This is part of a new system used to prevent someone from using the software from two places at once. This is used for the ActiveX client, not the web client. The web client uses an older and much more complicated system.
The idea is that if you want alerts, you have to tell us the last id that you received. Then we know to only give you new alerts, not a repeat of the old alerts.

In the web client, we always accept that value as is. In the ActiveX client we store the last value in this field. The requested value should match this value, or we know that the user was cheating.

	AX_previous_id
	This is the last value of AX_last_id which we know the client saw. If a message gets lost, the client is allowed to ask for that information again. Without this field, and time a client lost a message, it would look like he was cheating.

	AX_sequence_number
	This is used in cooperation with the previous two fields. Each time you start the software or do a hard reset, the client asks for a new sequence number. If the client is disconnected due to a network glitch, he can use this sequence number to tell the server that he is trying to reconnect. The server can either accept the reconnect request, or it can say that the sequence number is out of date.
The exact details are tricky, but here’s an example. User logs in at home and gets a sequence number of 5. The user leaves for work, but does not turn off his computer. The user’s internet at home goes down. The user starts using the software at work. The server upgrades the sequence number to 6. The user’s home internet comes back to life. The user’s home computer automatically tries to reconnect and pick up where it left off. The server will correctly tell the home computer that it has been kicked off. The computer at work will not see anything interesting, and the user can continue working.

	class
	This field exists specifically to make https://secure.trade-ideas.com/stats/UserList.php more manageable. When we create accounts in bulk, we usually make up a new class name for them. Sometimes, like for scottrade or e*trade we also use this in manual queries. For example, every once in a while we have to add time to all of the scottrade accounts.

	valid_exchanges
	These are the exchanges that the user can access right now. This is a bit set. This uses the same format as the list of exchanges in the collaborate string.
Note: The requirements and design for dealing with the exchanges have been in constant flux. As a result, the corresponding fields are a little complicated.

	status
	This says what type of user this is, with regards to the exchanges. For example, he might or might not be a professional user. The exact codes are listed below.
· 'pro' – This user is a professional trader. In some cases we have to charge more for this user. In some cases we have to do the paperwork by hand for this user.

· 'non-pro' – This user is a non professional.

· 'non-pro-us' – This is similar to non-pro. At one time we had a way to charge people for specific exchange fees. This refered to a person who wasn’t paying us the fee, so we took it out of his payment to us. This value is obsolete.

· 'undeclared' – This is a new user who has not declared himself as pro or non-pro. This was mostly aimed at people who signed up before we got this information. This field said that the user hasn’t declared anything yet so we still need to find out. All new users must make this declaration before using the product.

· 'immune' – This refers to a user who is allowed to access the data, but we are not responsible for collecting the exchange fees. This is limited to a few specific partners like Scottrade.

	nasdaq_agreement
	This is the date when the user signed the on line agreement. This is null if he never signed the agreement.

	nasdaq_location
	The exchange agreement asks the user where he trades. There is no real definition of what that means so we get a variety of different answers and we accept them all. We don’t use this information, but we record it in case of an audit.

	oddsmaker_free
	This is the number of times a user is allowed to use the OddsMaker. It is null if the user has unlimited privileges. This is how we implement free trials. This counts the total number of times that he is allowed to use it, not the number of times remaining.

	oddsmaker_total
	This is the total number of times that the user has used the OddsMaker. This can be used in conjunction with the previous field to see if the user is allowed to use the OddsMaker again. This is also useful in general back office queries.
Note: This field is only incremented if the OddsMaker completes. The oddsmaker_use table contains similar information, but it updates as soon as the OddsMaker starts. So, if a query is interrupted, these two tables may have conflicting information.

	nyse_agreement
	This is the date when the user signed the on line exchange agreement.

	nyse_occupation
	This information is collected when the user fills out the exchange agreement. This information is not used but is saved for an audit.

	nyse_company_name
	

	nyse_company_address

	

	nyse_employment_functions
	

	paid_exchanges
	This is filled in as soon as the user selects a payment plan. As the user fills out his exchange agreements, bits are copied from here to the valid_exchanges field. This uses the same format as the valid_exchanges field and the collaborate string.

	sms_email
	This is for users who want to receive emails whenever they receive an alert. This can be different from the email field above. The above field is for administrative messages. This field might be sent to an email to SMS gateway. The user might want to see administrative messages on his computer, instead of his phone.

valid_recurring_payment
CREATE TABLE `valid_recurring_payment` (

 `recurring_id` varchar(20) character set latin1 collate latin1_bin NOT NULL default '',

 `user_id` int(11) NOT NULL default '0',

 PRIMARY KEY (`recurring_id`,`user_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table allows us to automatically activate a set of users every time a recurring payment comes in. This table is only updated through the back office. See https://secure.trade-ideas.com/stats/RecurringPayments.php
See the section describing the valid_paypal_subscriptions table for important information, including the difference between “recurring” and “subscription” payments.

There is no field saying the type of recurring payment. We assume that all payments are monthly.

	Field Name
	Description

	recurring_id
	This is the subscription id field assigned by PayPal.

	user_id
	This corresponds to the id field in the users table. Every time a payment comes in, we look up the recurring_id to find all of the user_id’s and we turn each one on for another month.

valid_paypal_subscriptions

CREATE TABLE `valid_paypal_subscriptions` (

 `subscr_id` varchar(127) NOT NULL default '',

 `service_type` enum('basic') NOT NULL default 'basic',

 `username` varchar(127) default NULL,

 `user_id` int(11) default NULL,

 PRIMARY KEY (`subscr_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
We use this table to match subscription payments with users. When a subscription payment comes in, we look up the subscription id in this table. When a new subscription is created, the PHP code automatically adds the relevant info to this table. Most of the time, that is all the maintenance which is required. However, the contents of this table are occasionally modified by hand. In fact, if we never modified this table by hand, then it would be completely redundant and unnecessary.
Notice the valid_recurring_payment table, which serves a similar purpose.

A “subscription” refers to an activity where a user signs up through PayPal. A “recurring payment” refers to an activity where the user gives us their credit card number and we punch it into PayPal. Although these are very similar at a high level, a lot of the details are different. This terminology comes from PayPal.

The valid_recurring_payment table allows each recurring payment to be linked to multiple user accounts. The linking is always done manually through the back office. This table, on the other hand, only allows linking to a single user, and that linking is usually automatic. This difference is based on how we think each feature will be used.
	Field Name
	Description

	subscr_id
	This is the subscription id field assigned by PayPal.

	service_type
	This field is not used.
The original idea was for the code that first received the new subscription message to record a lot of details about the subscription. For example, is this monthly or yearly. That info could be used each time we get the subscription payment.

For simplicity, we pull most of the information from the payment message each time we get paid, rather than storing it here. There is still some potential value to this field, or something similar. Currently the code for handling payments knows about every type of subscription we’ve ever offered. In theory we could put this important stuff into this field (or add a similar field) and remove most of the code needed to deal with the older offers.

	username
	This is the username, as sent to us by PayPal. A long time ago the user could put anything into that field. Now it’s very hard to put in a bad value.

This field is used when we first receive a new subscription to help us find the user. Most of the time we use the user_id field to find the user. We use both fields when trying to find all PayPal messages corresponding to a user in the “more user info” page in the back office.

	user_id
	This field is how we know which user a payment goes with. The message from PayPal will always contain a subscription id. We will look that up in this table to translate that to a user id.

Most of the time this matches the username. However, this can be changed. For example, some people have paid for the wrong account, and asked us to apply the payment to a different account.

Sometimes people cancel a PayPal subscription, and want to start a new subscription before the old one runs out. In that case you should set the user_id field to null for the old subscription. That way, when we get the EOT message for the old subscription, we will ignore it. Otherwise we would cut off the user when the first subscription ran out.

view_mru

CREATE TABLE `view_mru` (

 `user_id` int(11) NOT NULL default '0',

 `start_time` datetime NOT NULL default '0000-00-00 00:00:00',

 `settings` blob NOT NULL,

 `settings_md5` varchar(32) NOT NULL default '',

 PRIMARY KEY (`user_id`,`settings_md5`),

 KEY `by_timestamp` (`user_id`,`start_time`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

This table keeps track of the most recently used (MRU) settings for each user. This list is typically updated each time a user opens a new window or changes the settings in an existing window. These settings can be read from a number of places, including the web client, the TI Pro client, and the back office.

	Field Name
	Description

	user_id
	This corresponds to the id field in the users table.

	start_time
	This is the time when the window was opened or the strategy was changed.

Ideally this might show the last time that data was requested. However, that would cause us to update the table a lot more often.

	settings
	This is an exact copy of the collaborate string.

We try to format this in the canonical way. However, the canonically form for PHP programs is slightly different from the canonical form for C++ programs. This can cause duplication, but it only seems to be a problem when we look at https://secure.trade-ideas.com/stats/MostCommonSettings.php. This could be a problem for an individual user, but I’ve never seen it.

	settings_md5
	This is the md5 hash of the settings field. We use this because the settings field is too long to be a key field.

backup
This database no longer exists.

At one time we copied the old alert data into here. This was not replicated. The tables were all converted into compressed myisam tables, then copied elsewhere. We never actually used the backups, and that took some effort on my part, so we stopped doing that. We still delete old data from the main database, but now it is gone forever.

mysql

This is mysql’s internal database used to track things like usernames and passwords.
Often we copy this directly from one database to the next, even when the version changes, so that we can be sure things are the same. That is not ideal.
Note in particular the changes related to the password field. Newer versions of mysql use a longer field which is not compatible with older clients.

test

This is the standard test database. It is automatically created when you install myself. It doesn’t seem to hurt anything so I’ve been ignoring it. I might delete it just for security reasons.

High Level Descriptions

These are some older descriptions from an old design review. Ideally these would be replaced with more information in the section above.

	Table Name
	Description

	AX_windows
	This is old and I hope it will go away soon. This is part of version 2 of our ActiveX API. This contains the request that the user made for each of his windows. This was an attempt to be more efficient than the web version of our software, where the user restates all of his filters each time he wants data.

	admin_permissions
	This describes who can access which accounts for our back office. This is not for our own employees, but for customers who buy bulk licenses and see what their people are doing. This interface works, but it hasn’t been used much and I expect it to change a lot as it is used.

	Alerts
	This is the big one. This is the queue of all alerts. The id column auto increments to allow multiple providers to dump alerts into it. The id is the way that consumers decide what data to they haven’t seen yet. The date and time field is also an index, but this is only used to find a good starting place for historical requests. Because there are multiple producers, these are not guaranteed to go in order (although they should be close.) Other indexes were originally added for special purpose web pages, but sometimes help the normal queries, too.

	alerts_daily
	This contains information about each stock which we only update once per day. This is almost always joined with the alerts table. This is a separate table for performance reasons.

Notice that the symbol field is called “d_symbol”. In most cases we use the same field name everywhere. And, originally, this field was named “symbol”. But when we first split this table out from the alerts table, there were some bugs. Several queries were still looking for “symbol” not “alerts.symbol”. This bug was found when the system was live, so we needed the quickest fix possible. That’s whay the field was renamed.

	auto_wl
	The white label is a property that we keep for each user. This allows us to track where a customer came from. Often we use pattern matching to determine, initially, where a customer came from. This table has a list of patterns, and the white label associated with that pattern. This is only used for new users.

	banned_emails
	These are used by our free trial system. When we see too much abuse from a single email address or ip address, we block it here. These are used by many of our back end reporting tools. Note: The free trial system recently was taken off line.

	banned_ips
	

	email_demos
	This records who has received a free trial. This prevents duplicates, and allows us to further examine the free trials in our back office.

	format_lists
	

	format_values
	

	Hosts
	

	link_destination
	

	list_permissions
	

	other_payments
	This is part of a system that has never really been used. We’re currently working with the one customer who should be using this to get the requirements fixed. This is a list of every time someone says they will pay, and we need to bill them.

	raw_ipn_field
	This is data from PayPal. PayPal data comes into the web server as a list of fields. That list can change over time, and with different types of transactions. For the maximum flexibility and debugability we store the data as a list of fields. This is a pain to use, but I can’t see getting rid of this ever. We might add some additional tables to hold the same data in other formats, but not get rid of this.

	raw_ipn_msg
	Each message from PayPal gets one of these. We seldom look at this, except for the id number automatically generated by the database. That becomes part of each record in in raw_ipn_field.

	signup_special
	These are special deals that we offer. If someone adds a link to us on their web site, they often want to give a special deal to the user for signing up there. This allows us to extend the free trial to a specific date, or a certain number of days from the current date. This also had a field for some special text, but this is seldom used. The text is difficult to write because it will appear on multiple web pages. Note: Questionable value with no more free trials!

	sponsor_authorize
	Similar to other_payments, but not as nice!

	survey_apr_2005
	We have a web page giving a survey to customers, and other page that displays the results.

	symbol_info_f
	This is used by our StockInfo pages to give information to the user for free. This particular table provides “fundamental” data, such as the company name. This is mostly changed by the overnight software, but there are ways to override those values by hand, and to make these values stick. These are only deleted by hand.

	symbol_info_m
	This is information will be available to the StockInfo pages if it is ever finished. It is all entered by hand. It includes information like the company’s web site which is not available through our standard feeds. It is also intended to replace the manual/sticky parts for symbol_info_f, to make the table structure cleaner. This is a good idea, but because of the manual labor involved I don’t know if it will ever be finished.

	symbol_info_t
	This is also available for the StockInfo pages. This contains the “technical” data, such as various moving averages of the stock price. This is only updated by our overnight processing. Old values are deleted each night.

	symbol_lists
	Users can limit the software to display only certain stock symbols that they list out by hand. These are the names of the lists, as displayed to the user, and the ids of the lists, as used internally. The id is the only thing that is saved when a user stores his settings.

	symbols_in_lists
	These are the individual stock symbols in the symbol lists. These are stored in a table and accessed by a join to make it easy for the real-time software to do the filtering. I’ve worked a long time to try to make this efficient, with limited success. In part, it’s hard to optimize for all the different cases. When reviewing a long list of alerts, you want to do something different than if you only have a few alerts to examine. The odd index structure of this table was needed to deal with the flexibility we give the user. If a user make one query which accesses different lists owned by different users, that is a tough case. We index these first by stock symbol, because that’s the part that we know for certain.

	user_cookie
	This stores a history of the user. The strange layout is in part historical, since I thought we’d need to access old cookies. The web part of the code is very complicated, and I don’t want to change it until I have to. Eventually I started putting other useful stuff into the cookie field since I already had it.

Cookies are used to make sure that, if the user has several web pages looking at our data at the same time, they are all on the same computer. Otherwise we cut off the data, and tell the user to buy another account. Once per hour we update the cookie.

As a side effect of this security mechanism we get a good overview of the user’s actual usage. The web logs have more details, but they have too much and are hard to access. The other types of clients have to use this table so you can’t have different people sharing the account at the same time using different clients. But they also take advantage of the history that this keeps.

	user_deltas
	Every change to the user table is listed here. There is a clever php function which takes care of that. Changes made directly from the SQL command line do not appear here. Very userful for our back office, but not used for anything else.

	Users
	This has the bulk of the information about each user. The username is the account name that the user is expected to provide. The id is how we refer to the user internally. Each user has an expiration date. He can use the software up until that date. That way we don’t forget to turn off a user. Many more fields.

	valid_paypal_subscriptions
	This matches a subscription id in PayPal to a user account. This is required for a few reasons. For one thing, when a person first signs up, we need to know a lot of details about the subscription. When he makes a regular payment, we don’t need to know as much. Keeping this table allows some of our scripts to stay simple as we change the details of the subscription process. Also, this allows us to make some other changes. For example, a person will sometimes pay for one account, when he meant to pay for a different account. By changing this table, we can make this change without any action on the user’s part.

	view_mru
	This stores each user’s recent settings. This data is provided to him in various ways in the various clients. This is only a convenience.

