
Confidential Page 1 10/6/2008

The ActivContentGateway API

Document Version 1.8.11

ACTIV Financial Systems, Inc.
125 South Wacker Drive

Suite 2325
Chicago, IL 60606

Confidential Page 2 10/6/2008

Contents

1.0 Introduction ... 4
2.0 Overview of the ActivContentGateway API .. 5

2.1 Server Connection ... 5

2.2 Content Gateway Discovery ... 5
2.3 Logon and Field Level Permissioning .. 5
2.4 Feed Level Subscription ... 5
2.5 Interactive Requests .. 6
2.6 Updates ... 6

2.7 Interactive Request Modes .. 6
2.8 Bandwidth Efficiency and Network Latency .. 7

3.0 The Content Platform Data Model .. 8
3.1 Record Data .. 8
3.2 Time Series Data ... 8
3.3 News Stories ... 8

4.0 The Navigation Model .. 9
4.1 Background to Navigation Data.. 9

4.2 Using the Navigation Model in Requests ... 10
5.0 The ActivContentGateway API in detail .. 14

5.1 Use of the C++ Standard Template Library .. 14

5.2 Use of ActivMiddleware Functions .. 14

5.3 Namespaces... 14
5.4 The ContentGatewayClient Class ... 15
5.5 Connecting to a Content Gateway .. 16

5.6 Feed Level Subscription ... 18
5.7 Interactive Record Requests ... 19

5.8 Processing Record Updates ... 33
5.9 Parsing Field Data ... 34
5.10 Time Series Requests .. 35

5.11 Symbol Directory Requests .. 44
5.12 News Server Requests... 46
5.13 Metadata Requests .. 49

5.14 Important Auxiliary Classes and Types in the ActivContentGateway API 50
6.0 References ... 52
Appendix 1 - Example RequestBlock and ResponseBlock usage 53

Appendix 2 - Symbology Reference ... 56
A2.1 Equities... 56
A2.2 Equity Options ... 56
A2.3 Futures .. 57
A2.4 Future Options.. 57

A2.5 Future Spreads.. 57
A2.6 Market Makers ... 57
A2.7 Order Book ... 57

A2.8 Exchange Traded Funds ... 57

Confidential Page 3 10/6/2008

A2.9 Forex .. 58
A2.10 Index... 58
A2.11 Mutual Fund ... 59
A2.12 Money Market .. 59

A2.13 Rankings... 59
A2.14 Exchange Statistics .. 59
A2.15 News Stories .. 60

Appendix 3 - Exchange List ... 61
Appendix 4 - Event Types .. 64

A4.1 EVENT_TYPE_NONE ... 64
A4.2 EVENT_TYPE_TRADE ... 64
A4.3 EVENT_TYPE_TICK ... 64

A4.4 EVENT_TYPE_TRADE_CORRECTION .. 65
A4.5 EVENT_TYPE_TRADE_CANCEL ... 65
A4.6 EVENT_TYPE_TRADE_NON_REGULAR .. 65

A4.7 EVENT_TYPE_BBO_QUOTE ... 66
A4.8 EVENT_TYPE_QUOTE ... 66

A4.9 EVENT_TYPE_COMPOSITE_BBO_QUOTE .. 67
A4.10 EVENT_TYPE_CLOSING_QUOTE .. 67
A4.11 EVENT_TYPE_CLOSING_BBO_QUOTE ... 67

A4.12 EVENT_TYPE_OPEN .. 68
A4.13 EVENT_TYPE_CLOSE .. 68

A4.14 EVENT_TYPE_RESET .. 69

A4.15 EVENT_TYPE_NEWS ... 70

A4.16 EVENT_TYPE_NEWS_DELETE .. 70
A4.17 EVENT_TYPE_PURGE ... 70

A4.18 EVENT_TYPE_ALERT .. 70
A4.19 EVENT_TYPE_BBO_DEPTH ... 70
A4.20 EVENT_TYPE_ORDER ... 70

A4.21 EVENT_TYPE_HALT_RESUME .. 70
A4.22 EVENT_TYPE_IMBALANCE_VOLUME .. 71

A4.23 EVENT_TYPE_PRICE_INDICATION .. 71
A4.24 EVENT_TYPE_REFRESH ... 71

A4.25 EVENT_TYPE_REFRESH_CYCLE .. 71

A4.26 EVENT_TYPE_OPTION_REFRESH .. 71

A4.27 Other Event Types ... 72
Appendix 5 - Magazine list ... 73
Appendix 6 - Non common stock issues... 76
Appendix 7 – Future Aliases... 78

Confidential Page 4 10/6/2008

1.0 Introduction

This document describes the C++ ActivContentGateway API, a component of the

ACTIV Content Platform.

A full introduction to the ACTIV Content Platform and the role of the

ActivContentGateway API can be found in [1]. We highly recommend reading this

before continuing.

Confidential Page 5 10/6/2008

2.0 Overview of the ActivContentGateway API

The ActivContentGateway API is a set of C++ classes and types that together form the

client interface to the Content Gateway.

The ContentGatewayClient class handles connection to the Content Gateway and

provides overrideable virtual methods for receiving asynchronous responses and updates.

The RealtimeRequestHelper, TimeSeriesRequestHelper, SymbolDirectoryRequestHelper

and NewsRequestHelper classes provide functionality for launching data requests and

decoding response messages.

Various other support classes provide additional data types and helper functionality.

2.1 Server Connection

The ActivContentGateway API is a traditional connection-based client. Communications

with a Content Gateway begin when the client initiates a TCP/IP connection and end

when the client disconnects. Delivery and correct ordering of data during the lifetime of a

connection are guaranteed. Connection state changes are communicated reliably to both

client and server.

2.2 Content Gateway Discovery

The ActivMiddleware Directory Service supports various dynamic and static service

location strategies. The ActivContentGateway API uses the Directory Service to locate

and connect to a Content Gateway server, and to reconnect in the case of a service failure.

The default connection and reconnection policies can be overridden by the application

programmer if desired.

2.3 Logon and Field Level Permissioning

The ActivContentGateway API must log-on to the Content Gateway before data can be

accessed. The log-on credentials are used to establish a set of user permissions, which are

enforced by the Gateway when any request for data is made.

Permission checks are performed at field level, not record level. Thus records containing

data from mixed sources are fully supported by the permissioning system.

2.4 Feed Level Subscription

Feed-level subscription is designed to support bulk delivery of ACTIV‟s feed. The feed-

level user does not need to know which items to request – a feed-level application simply

„opens the pipe‟ and listens to data as it arrives. The data takes the form of refresh

messages and updates. This approach is suitable for users wishing to write handlers to

take ACTIV‟s feed data en-bloc into new or existing in-house systems.

The term image is used to refer to a complete copy of a record including all fields. Feed-

level subscribers receive record images as part of a refresh cycle. Whenever the ticker

plant has spare bandwidth on its output communications medium, it uses this to push out

Confidential Page 6 10/6/2008

record images. This allows downstream components to build up a complete copy of static

or rarely-changing data in the ticker plant database. A complete refresh cycle typically

lasts a few hours. Once one cycle completes a new one is started in an endlessly repeating

process.

In addition to refresh messages, the feed-level subscriber receives real time updates.

These are sent immediately on any change to a record and include only the fields that

have changed (plus some additional information such as update Id and event type).

Updates have higher priority than refreshes and are always output by the ticker plant

immediately.

Downstream feed-level applications must handle both refresh messages and updates.

There is no guarantee that a feed-level user will receive a refresh before receiving updates

on a particular item; in fact this will rarely happen. Typical feed-level applications must

„listen‟ to a whole refresh cycle before their internal state is fully up-to-date.

It is worth noting that feed-level subscribers can also make use of interactive requests

should they so choose – this may make sense under some conditions, e.g. to get access to

the time series data stored by the Content Server, if the feed-level application is not

databasing this itself.

2.5 Interactive Requests

The ActivContentGateway API offers a rich set of interactive requests for both record-

based and time series data. Snapshot only and real time watches (with or without initial

full data image) are supported. Requests for single and multiple record retrieval, partial

matches and list requests are supported, as are flexible time series requests.

Interactive users do not need to handle refresh messages. The Content Server handles

refreshes on their behalf to maintain an up-to-date full image of each record.

2.6 Updates

In addition to new values of changed fields, updates contain:

- an Update Id, which is a sequential per-record counter that increments on each

update.

- an Event Type, which is an enumeration value indicating what caused the update

(e.g. a new quote, a trade, a trade correction).

2.7 Interactive Request Modes

The ActivContentGateway API supports three request modes for interactive requests,

these are:

- Asynchronous

- Synchronous

- Non-Blocking Synchronous

Confidential Page 7 10/6/2008

Asynchronous requests accept a RequestId which is used to identify the response when it

is received via a callback. Asynchronous requests are preferred in most real-time

applications since they offer the best possible system throughput.

Synchronous requests block until the full result set has been retrieved, and provide this

data as output parameters to the request call. This is convenient for some kinds of

application, e.g. where the result of a request is needed before processing can continue.

Non-Blocking Synchronous requests complete immediately, returning a SyncRequestId

object. The user is free to go on and do additional processing, and in particular can launch

additional overlapping requests with further SyncRequestId objects. Once the caller is

ready, a call (with configurable timeout) is made using the SyncRequestId to pick up the

results.

The Non-Blocking Synchronous request mode offers the key advantage of synchronicity

(the results are returned in the callers own context) but is almost always a more

performant choice than a fully synchronous request. It lends itself to tasks such as

building a complex web page, where single-context execution is required, but

overlapping of requests is desirable to reduce page build time.

Non-blocking synchronous requests are not currently implemented for Time Series

requests.

Note that the Content Gateway receives all requests asynchronously, regardless of the

request mode used by the ActivContentGateway API – synchronous request behavior is

implemented entirely on the client side. The Gateway will generally overlap response

processing to ensure fair treatment of all connected clients.

2.8 Bandwidth Efficiency and Network Latency

ActivMiddleware is highly optimized for performance and minimal. To further reduce

on-wire costs, the ActivContentGateway API fully supports features such as field-level

requests, including, critically, field level permissioning of requests.

As will be seen in later sections, the ActivContentGateway API supports a very flexible

request syntax allowing complex requests to be made in a single step. As an example, a

single record request can be used to fetch listing level data for MSFT.Q whilst at the

same time determining all indices of which MSFT.Q is a member, retrieving all option

root symbols for MSFT.Q, and returning data fields on all of these items.

Complex requests are convenient for the application programmer, but crucially also offer

bandwidth savings and significantly reduce the number of network round-trips required

to complete complex data retrieval tasks. This leads to very low response latency. Low

latency is always good for application performance, and is particularly significant when

dealing with HTTP tunnels or other kinds of remote network link.

Confidential Page 8 10/6/2008

3.0 The Content Platform Data Model

3.1 Record Data

The ActivContentGateway API accesses record based data stored within the Content

Server by making requests via the Content Gateway. The data is stored in ActivDatabase

(a generic highly optimized real-time database management system) tables optimized for

random access.

Each table has a primary key which is typically the symbol of a financial instrument, e.g.

MSFT.Q, and a set of fields each identified by a field Id. Tables containing record data

are generally referred to as market data tables. Every table is uniquely identified by an

integer table number.

The set of fields (plus metadata such as the field type and maximum field length) for a

given table is termed a table template. Differing kinds of data need different fields and

hence live in different tables. Each table has its own table template, and the terms table

number and table template are often used synonymously. A typical global market data

system may have many hundreds of market data tables.

A given symbol can appear in only one market data table (but will also be used to

identify the time series for this item in the time series database). The term key is used

within this document to mean the combination of symbol and the table number of the

table where that symbol resides.

3.2 Time Series Data

Time Series data is held in data tables optimized for the serial nature of the data (adds are

usually at the end of the series, lookups are usually sequential). The tables are keyed by

time as well as symbol, and are referred to as time series tables. Time series tables have

table numbers and table templates just as market data tables do.

The time series database can accumulate tick-by-tick data, end-of-day data and intraday

bars of various bar periods. These series are stored in separate tables.

3.3 News Stories

The ActivContentGateway API accesses news stories stored in the News Server by

making requests via the Content Gateway. The News Server supports a rich query syntax

that is described in News Server Requests below.

Confidential Page 9 10/6/2008

4.0 The Navigation Model

It is important to note that it is not necessary to use the navigation data model to make

data requests in the ActivContentGateway API. However, the model allows far greater

flexibility and expressiveness in each request and allows complex results to be retrieved

in a single network round trip.

4.1 Background to Navigation Data

Navigation data is meta-data which expresses links between related items. This concept is

well illustrated by considering the relationship between a company, the securities it has

issued, and the prices at which those securities are traded on various regional exchanges -

this is often referred to as the „Company-Security-Listing‟ model. (Note that this model is

a simplification of real-world corporate equity structure – an interesting discussion of this

topic can be found in [2]).

„Company‟ refers to aspects of the company itself such as its name, business segments

and total market capitalization. Although traditional market data systems often take an

ad-hoc approach as to where to store this data, these items can best be represented in their

own database record, a „company level record‟. „Security‟ refers to the properties of each

security – for example ISIN code, par value and dividend details. This data can best be

held as „security level records‟, one per security. „Listing‟ refers to the details of trading a

particular security on a particular exchange, for example last trade price, current quote

and cumulative volume, and these also deserve their own database record. This is the

„listing level record‟.

This model is illustrated in the following diagram:

[Company]
Symbol = 12345.CO
Name = “Diageo Plc”

[Security]
Symbol = 735343.SEC

UK Ord
ID = GB0002374006

Dividend = 9.9p
Name = “Diageo ord 28 101/108p”

[Security]
NYSE ADR

Symbol = 345791.SEC
ID = 25243Q205

Dividend = .6124 USD
Name = “Diageo P L C”

[Listing]
DGE.L

Close = 638p

[Listing]
DEO

Close = $42.05

Confidential Page 10 10/6/2008

The symbols employed for the company and securities are arbitrary values given for the

purposes of example only. The database representation of the above (ignoring currency

issues) is:

Companies table:
Symbol Name <Other fields> … …

12345.CO Diageo Plc … … …

Securities table:
Symbol ID Dividend Name …

345791.SEC 25243Q205 0.6124 Diageo P L C …

735343.SEC GB0002374006 9.9 Diageo ord 28

101/108p

Listings table:
Symbol Close … … …

DEO 42.05 … … …

DGE.L 638 … … …

The above data model is clean and easily maintained, and avoids the problems of data

duplication and inconsistencies typically present in market data systems which try to

„cram‟ the company and security level data into listing level records. However, a

mechanism is needed to relate the symbols to each other. For example, it is clear from the

diagram that DGE.L, 735343.SEC and 12345.CO are related entities, but we need a way

to represent this programmatically. The ACTIV Content Platform does this through

relationships, which will be discussed further in the next section.

Company-security-listing is one useful example of navigation but there are many others.

Other commonly encountered relationships include option to option root to underlying,

performance chains, index and sector index chains, and currency forward points chains,

to name but a few. The ACTIV Content Platform supplies many navigation relationships

as standard and allows administrators to define additional ones as necessary.

4.2 Using the Navigation Model in Requests

A major feature of the ACTIV Content Platform is its extremely powerful and extensible

framework for building navigation models, and the ability to use the navigation model

seamlessly when making requests for data.

The navigation model uses relationships to link entities such as Companies, Securities,

Listings, Option Roots, Indexes and many others. Each relationship is identified by an

integer Relationship Id.

To illustrate the idea of navigation-based requests, let‟s look at some examples. A pseudo

request syntax is used for clarity – the actual parameters to Feed API methods are C++

structures and are slightly more complex than those shown here.

Confidential Page 11 10/6/2008

Canonical Requests

The following illustrates how to request the close price for DGE.L (the UK listing of

Diageo) along with the related dividend, security name, company name and operating

profit.

1. GetEqual(“12345.CO”, {FIELD_ID_NAME, FIELD_ID_OP_PROFIT});

2. GetEqual(“56789.SEC”, { FIELD_ID_NAME, FIELD_ID_DIV});

3. GetEqual(“DGE.L”, { FIELD_ID_CLOSE});

The GetEqual request takes a single symbol and a list of fields and returns the appropriate

data from the database. (Note - these three separate requests could have been represented

instead by a single GetMultipleEqual request which would have executed in a single

network round trip.)

Navigation-Based (Aliased) Requests

This requests above are termed canonical because the real key is being specified with

each. Here is an equivalent request made using the navigation model:

1. GetEqual(“DGE.L”,

{[RELID_NONE] FIELD_ID_CLOSE},

{[RELID_SECURITY] FIELD_ID_NAME, FIELD_ID_DIV},

{[RELID_COMPANY] FIELD_ID_NAME, FIELD_ID_OP_PROFIT});

This request is processed by the Content Gateway in three steps:

1. the record for DGE.L is found and the CLOSE field added to the results.

2. the SECURITY relationship for DGE.L is „followed‟ to reach the relevant security

symbol. The security record is located and the NAME and DIV fields are added to

the results.

3. the COMPANY relationship for DGE.L is followed to reach the relevant company

symbol. The associated record is located and the NAME and OP_PROFIT fields

are added to the results.

This request returns exactly the same results as the previous canonical request.

Navigation requests of this kind can be arbitrarily complex, and usually execute in a

single network round trip (very large results sets may be returned by the Content

Gateway in multiple parts, but this is still preferable to multiple round trips).

There are two big advantages of the navigation-based request:

Firstly, the company and security symbols did not need to be known by the requesting

application – only the listing level symbol was required. This will often be known or can

be looked up. The only additional prior knowledge was the relationship names, which

have fairly obvious meaning. The end result is that the user can access more of the

available data with less prior knowledge about its symbology and location.

Confidential Page 12 10/6/2008

Secondly, many kinds of relationship resolve differently over time. For example, consider

a request for the trade price of every Dow Jones Industrial Index constituent:

1. GetEqual(“=DJI.DJ”, {[RELID_LISTING] FIELD_ID_TRADE}

This request will always resolve to the current list of Dow Jones constituents, even

though that changes over time.

One-To-Many Relationships

The above example makes it clear that some navigation relationships are one-to-many -

this is accommodated by the ActivContentGateway API. A request for a single symbol

may result in a table of results.

Aliasing

Here are two navigation-based requests that return identical results:

1. GetEqual(“DGE.L”, {[RELID_COMPANY] FIELD_ID_OP_PROFIT}

2. GetEqual(“56789.SEC”, {[RELID_COMPANY] FIELD_ID_OP_PROFIT}

In general there may be any number of ways in which a particular result may be

requested using navigation-based requests – it depends on the relationships set up on your

system. For this reason, navigation-based requests are also referred to as aliased requests.

Aliasing has important implications for data caching, since the returned symbols don‟t in

general match the requested symbol. Responses from the ActivContentGateway API

always include enough information for the user to be able to maintain this mapping – see

ResponseParameters which discusses the response format in detail.

Updating Navigation Links

We noted above that relationships, such as that between the Dow Jones Industrial

Average and its constituents, are liable to change over time.

When a relationship Id is used in a requests, it is resolved based on the current state of the

navigation database, and record images are returned to the user followed by real time

updates as they occur. Whenever a request is made, the most up-to-date navigation data is

used to resolve it, so new requests always receive the correct data.

Subscriptions that were already open at the time of the navigation are not currently

affected, although future Content Gateway versions will detect these and update which

symbols are subscribed to in real time.

Field Scope

Another way to look at relationship Ids is to regard them as a field scope. Market data

systems typically have fields which may have broad applicability – for example „Name‟.

FIELD_ID_NAME is present in many table templates, so the intended meaning is not

clear until a symbol is specified. The meaning of the field is relative to the supplied

symbol, and the field is said to be implicitly scoped.

Confidential Page 13 10/6/2008

On the other hand {[RELID_SECURITY]FIELD_ID_NAME} has an explicit meaning,

regardless of whether the symbol provided in the request refers to a listing, security or

any other entity. The Content Gateway will always look for a navigation path to a

security, and if one exists will follow it and return the security name. This field is said to

be explicitly scoped. We can write fully scoped fields as <scope>.<field id> for brevity,

e.g. SECURITY.NAME.

The idea of explicitly scoped fields is potentially interesting – here is an example GUI

grid display which can accept any kind of entity and uses navigation to try to show

meaningful data:

Symbol SECURITY.NAME COMPANY.NAME LISTING.CLOSE

735343.SEC Diageo ord 28

101/108p

Diageo Plc 638

DGE.L Diageo ord 28

101/108p

Diageo Plc 638

Here is how the grid looks without explicitly scoped fields:

Symbol NAME NAME CLOSE

735343.SEC Diageo ord 28

101/108p

Diageo ord 28

101/108p

n/a

DGE.L n/a n/a 638

Of course, such a grid may have to handle one-to-many display issues in practice. For

example, LISTING.CLOSE for a security symbol will typically result in multiple targets

(one for each listing). GUIs can handle this using a drill-down mechanism – e.g. double

click the cell to see the complete list of values.

Confidential Page 14 10/6/2008

5.0 The ActivContentGateway API in detail

5.1 Use of the C++ Standard Template Library

Many of the types used in the ActivContentGateway API are typedefs of STL types,

particularly std::vector. std::string is also used extensively. Familiarity with basic STL

operations (e.g. iteration) is assumed. For further information on the STL, please consult

an appropriate text book, such as [3].

5.2 Use of ActivMiddleware Functions

The ActivContentGateway API relies on ActivMiddleware to provide services such as

network communications and service location.

ContentGatewayClient is the main class in the ActivContentGateway API. It is derived

from Activ::Component, making all middleware base Component functionality (such as

messaging, alarm callbacks, remote console user-interface support and access to directory

services) available. This additional functionality is optional – the API described in this

document is all you need to write fully functional Feed API applications. Some of the

enhanced middleware functionality is licensed separately from the ActivContentGateway

API.

The ContentGatewayClient class constructor requires an Application object reference

(which can be Activ::AgentApplication, or Activ::ThinApplication) and a

ManagedEndPoint object reference.

AgentApplication provides all necessary middleware core services and allows you to

write stand-alone applications. ThinApplication expects to connect via the ACTIV

Shared Memory transport to an AgentApplication running in a different process on the

same machine, and should be used where multiple clients wish to share middleware

services.

5.3 Namespaces

The ActivContentGateway API makes use of the following namespaces:

Activ

This is the top level namespace. All ACTIV headers reside in this namespace, or a child-

namespace.

Activ::ContentPlatform

All headers in the include/ActivContentPlatform directory reside in this namespace, or a

child-namespace.

Activ::ContentPlatform::Feed

Headers which relate to ActivFeed, but not specifically to APIs which can access the

feed, reside in this namespace. For example,

include/ActivContentPlatform/ActivFeedCommon.

Confidential Page 15 10/6/2008

Activ::ContentPlatform::FeedApi

Headers which are common to all ActivFeed APIs (currently the ActivContentGateway

API and the ActivContentServer API) reside in this namespace.

Activ::ContentPlatform::ContentGatewayApi

Headers which relate to the ActivContentGateway API itself reside in this namespace.

ACTIV makes use of the „using‟ directive in the sample applications provided with the

SDK for code clarity and brevity:

using namespace Activ;

using namespace Activ::ContentPlatform;

We will assume the above in the code example that follow.

5.4 The ContentGatewayClient Class

ContentGatewayClient provides methods for:

- connecting to Content Gateways and connection management;

- starting and stopping feed-level subscription;

- making interactive requests (via helper classes);

- receiving asynchronous data and notifications;

- validating and decoding asynchronous responses;

- handling multi-part responses.

The ContentGatewayClient uses helper classes to implement interactive request

functionality for both record, time series and news requests. Interactive requests are

described in detail below.

ContentGatewayClient is seldom used directly. Instead application programmers usually

derive their own class from ContentGatewayClient so that they can override virtual

methods to receive asynchronous notifications. Nonetheless we continue to refer to

„ContentGatewayClient‟ in this document for simplicity.

Creating a ContentGatewayClient

The following code fragment shows how to initialize a ContentGatewayClient. In this

example, the code constitutes the „main‟ function of a console application.

int main(int argc, char *argv[])

{

 AgentApplication::Settings settings;

 AgentApplication application(settings);

 ContentGatewayApi::ContentGatewayClient client(application,

application.GetManagedEndPoint());

 application.Run();

 return EXIT_SUCCESS;

}

Confidential Page 16 10/6/2008

Threading

Application gives you control over the threading model for your program. In the above

example, the main thread is being used to drive the Application object, and all callbacks

will be driven from this thread. Run() does not return until the Application has been shut

down (typically via its user interface).

If you wish to start a separate thread to drive callbacks, call
 application.StartThread();

This call returns immediately, allowing you to proceed with other processing on your

thread. If you do this, you must take care of thread synchronization issues between your

thread and the callback thread. You should also stop the callback thread once you are

finished using:

 application.PostDiesToThreads();

 application.WaitForThreadsToExit();

When WaitForThreadsToExit() returns thread cleanup is complete and you can exit your

application.

StartThread() can be called once only – this is enforced within the API. It is not possible

to guarantee correct ordering of data if more than one thread is servicing callbacks.

If you intend to access the ContentGatewayClient from a single thread (i.e. receive

updates and make all API method calls from the same thread), you could instantiate a

client using the ContentGatewayClient::Settings object as follows:

ContentGatewayApi::ContentGatewayClient::Settings settings;

settings.m_createMutex = false;

ContentGatewayApi::ContentGatewayClient client(application,

application.GetManagedEndPoint(), settings);

This saves a small amount of thread synchronization overhead.

5.5 Connecting to a Content Gateway

The ContentGatewayClient class offers the following functionality to support connection

and management of connection state:

- The Connect() and Disconnect() methods.

- A ConnectParameters member class.

- Overrideable OnConnect(), OnDisconnect() and OnBreak() methods with default

handlers.

- A current connection state via the GetState() method.

- The GetServiceLocation() method which returns the url of the Content Gateway

that the ContentGatewayClient is currently connected to.

- The GetContentGatewayInfo() method which returns detailed information about

the Content Gateway the ContentGatewayClient is currently connected to,

including hostname, OS it is running on, uptime, etc.

Confidential Page 17 10/6/2008

Connecting to a Content Gateway is a two stage process. The first step is to discover the

url of a Content Gateway which is accomplished using the FindServices() method

provided by the ServiceApi class of ActivMiddleware.

The second stage is to call the Connect() method, passing a filled in a ConnectParameters

object and a timeout value. Please see any of the provided samples for detailed examples

of using the FindServices() and Connect() methods.

A timeout value of zero indicates that an Asynchronous connect will be performed. In

this case, you can override OnConnect() to be notified when connection completes – you

should call the inherited version of OnConnect() from your override as this updates

internal Feed API state; this function returns STATUS_CODE_SUCCESS if connection

was successful.

A non-zero timeout value leads to a synchronous connect. On return from Connect(),

provided the return value is good, connection and authentication has succeeded. The

timeout is in milliseconds.

At any time the current state of the connection can be determined by calling GetState().

The ConnectParameters class contains the following members:

m_serviceId Service Id of content gateway.

m_url Location of a content gateway as

returned from the FindServices()

method.

m_userName User name.

m_password Password.

m_policy Action to take on a connection

break. The default is to

continually retry connecting to the

same gateway.

m_failoverSeconds How long to attempt reconnection to

the current gateway before failing

over to another.

m_attributeQuery, m_agentScope If the API is set to automatically

failover (via m_policy), use these

parameters to discover a suitable

gateway to failover to. Generally

you’ll leave them set to the

default values.

m_userType The gateway can restrict logins for

the provided user name to certain

types of application such as

ActivWorkstation, third-party ISV

applications, or general API users.

Unless your user name is

permissioned this way, the default

USER_TYPE_API will probably

suffice.

m_infoString An arbitrary string than you can

set.

Confidential Page 18 10/6/2008

Basic authentication is piggy-backed onto the connection protocol to avoid an additional

round trip - set m_userName and m_password appropriately. In future, additional

authentication schemes may be added.

OnBreak() is called when a connection to a gateway is lost unexpectedly. By default, the

client will attempt to reconnect to the gateway if the connection is broken for any reason.

If m_policy is set to POLICY_FIND_NEXT_ALTERNATIVE, after m_failoverSeconds

the client re-resolves the service Id with the directory service and tries to connect to the

next available server. If no connection is possible, this process is repeated – all available

servers are tried in a round-robin fashion until a connection succeeds.

POLICY_FIND_RANDOM_ALTERNATIVE is similar, except instead of attempting

connections in round-robin, a random gateway will be chosen from those available.

If overriding OnBreak(), call the inherited method if standard reconnection policies are

being used. If the standard policies are not appropriate, your OnBreak handler can use the

appropriate Middleware services to implement your own custom policy – this is beyond

the scope of this document.

Disconnection from the Gateway is instigated by calling Disconnect() and is always

performed asynchronously. To receive notification of a completed disconnection,

override OnDisconnect() and call the inherited OnDisconnect() handler which returns

STATUS_CODE_SUCCESS if disconnection was successful.

5.6 Feed Level Subscription

Feed level subscription provides „raw‟ access to ACTIV‟s complete feed, after filtering

the content at field level according to user permissions.

The ContentGatewayClient supports feed level subscription via the SubscribeToFeed()

and UnsubscribeFromFeed() methods.

Various modes of feed level subscription are available via the SubscribeFeedParameters

object passed to the SubscribeToFeed() method. It is possible to receive all record update

messages, receive only updates from a subset of event types or just to receive new record

and record delete messages. Record updates are delivered via the OnRecordUpdate()

callback.

The message stream is closed by calling UnsubscribeFromFeed().

The SubscribeFeedParameters class contains the following members:

m_type TYPE_FULL receive all updates

TYPE_ADD_OR_DELETE receive only

record add or delete messages

TYPE_EVENT_TYPE_INCLUDE_LIST

Confidential Page 19 10/6/2008

receive only

updates with event types specified

in m_eventTypeList

TYPE_EVENT_TYPE_EXCLUDE_LIST

receive only updates with event

types not specified in

m_eventTypeList.

m_eventTypeList List of event types

For information on processing the received update and refresh data, see 5.8 Processing

Record Updates.

5.7 Interactive Record Requests

Request Types

The following interactive requests return record data:

- GetEqual, GetMultipleEqual

- GetMultiplePatternMatch, GetMultiplePatternMatchList

- GatMatch, GetMultipleMatch

- GetFirst, GetLast

- GetNext, GetPrevious

GetEqual and GetMultipleEqual accept a key or list of keys respectively and return the

matching record(s) from the Content Server database. If a table number is not provided,

the gateway will search all appropriate Content Server tables.

GetMultiplePatternMatch accepts a symbol pattern and returns all matching records.

The pattern syntax is described here:

http://support.activfinancial.com/modules/smartfaq/faq.php?faqid=57

GetMultiplePatternMatchList is similar to GetMultiplePatternMatch but with support

for a list of symbol patterns instead of just one. The ordering of returned records will be

all symbols that match the first symbol pattern, follwed by all symbols matching the

second symbol pattern, and so on.

A GetMatch request will use a heuristic to search for a matching symbol. Two are

currently provided:

MATCH_TYPE_COMPOSITE – attempts to find a composite record that matches the

provided symbol or, if no composite exists, the first regional record for that symbol.

MATCH_TYPE_PRIMARY – attempts to find the primary exchange record for the

provided symbol, or, if not found, any record that matches.

GetMatch is provided primarily for applications where the user does not wish to know the

details of the ACTIV symbology with respect to exchange codes; instead of being

http://support.activfinancial.com/modules/smartfaq/faq.php?faqid=57%20

Confidential Page 20 10/6/2008

required to enter a fully qualified symbol such as „IBM.N‟, they can enter „IBM‟ and get

either the primary or composite IBM record.

Some examples may clarify this:

Match type Input symbol Returned symbol Reason

Composite MSFT MSFT. A composite for MSFT was found

Composite MSFT. MSFT. MSFT. already the composite record

Composite MSFT.Q MSFT.Q MSFT.Q was an exact match *

Composite MSFT.PA MSFT.PA MSFT.PA was an exact match *

Composite ADGO ADGO.QB No composite, so first regional returned

Composite ADGO. ADGO.QB No composite, so first regional returned

Composite ADGO.QB ADGO.QB No composite, so first regional returned

Primary MSFT MSFT.Q Primary exchange for MSFT found

Primary MSFT. MSFT.Q Primary exchange for MSFT. found

Primary MSFT.Q MSFT.Q MSFT.Q already the primary record

Primary MSFT.PA MSFT.Q Primary exchange for MSFT found

* A future ContentGateway release will change the functionality of the composite

GetMatch in this case to return the more consistent MSFT.

Note the SymbolId provided to GetMatch can leave the table number undefined in a

similar vein to GetEqual.

GetMultipleMatch is similar to GetMatch but accepts a list of symbols to search for.

GetFirst, GetLast, GetNext and GetPrevious together support forward and reverse

table walks. GetFirst and GetLast return, respectively, the N records at the start or end of

a specified table (where N is specified by the caller). GetNext and GetPrevious accept a

table number and symbol and return the N records following or preceding the specified

symbol (note that the provided symbol does not actually have to exist).

Common Characteristics

The interactive record requests have many characteristics in common:

- All use very similar RequestParameters objects – there are slight differences

depending whether the request needs a key, a wildcard symbol pattern, or a list of

keys, etc.

- All have identical ResponseParameters.

- All allow both canonical and navigation-based requests to be made (and the two

can be mixed together).

- All support all three request modes, namely Asynchronous, Synchronous and

Non-Blocking Synchronous.

- All give the option of not receiving any, or certain, or all fields from the record

(subject to permissioning restrictions).

Confidential Page 21 10/6/2008

- All give the option of subscribing to the results of the request. See Subscription

and Updates for further information.

To make the interface to the various request types as consistent as possible, helper classes

are used.

Record Request Helper Classes

Each request type has an associated helper class which works in conjunction with

ContentGatewayClient to allow requests to be made simply and efficiently. They are

named GetFirst, GetLast, GetNext, etc. to match the name of the request.

The helper class:

- makes the correct request parameters available to you under the standard name

„RequestParameters‟.

- Makes the correct response parameters available to you under the standard name

„ResponseParameters‟.

- Has methods which let you submit your request as Synchronous, Asynchronous or

Non-Blocking Synchronous.

- Has methods which decode asynchronous responses for you.

The helper classes are nested classes of the ContentGatewayClient, so are accessible as

(for example) ContentGatewayClient::GetFirst. If you are within a class derived from

ContentGatewayClient, you can dispense with the scope operator and just write GetFirst.

Example Record Requests

To demonstrate the interaction of ContentGatewayClient and the Record Request helpers,

this section presents example record requests for all three request modes. The code

fragments introduce types and concepts which have not yet been discussed – details of

these will be presented in later sections.

Synchronous Request Mode

See DoSynchronousGetFirstRequest() in DocumentationSample.

Asynchronous Request Mode

Here is an example of how to make an asynchronous GetEqual request for Microsoft

Corporation‟s NASDAQ quote, MSFT.Q. We ask for only the ASK and BID prices. The

request is canonical, i.e. does not make use of navigation.

See DoAsynchronousGetEqualRequest() in DocumentationSample.

The above launches the request and returns immediately. To receive the data we need to

override a callback.

See OnGetEqualResponse() in DocumentationSample.

Confidential Page 22 10/6/2008

Each record request type has a corresponding overrideable response handler in

ContentGatewayClient.

Asynchronous requests offer the highest possible performance and throughput for your

application.

Non-Blocking Synchronous Request Mode

Here is an example non-blocking synchronous version of the above request.

See DoNonBlockingSynchronousGetEqualRequest() in DocumentationSample.

Non-Blocking Synchronous requests are almost always a higher performance choice than

pure Synchronous requests, because they allow you to overlap requests or do other work

while the request is executing. They still offer you the convenience of picking up the

results within your own thread context and flow-of-control, rather than via some separate

callback function (as in the asynchronous case). They are not as performant as fully

asynchronous requests.

RequestParameters

Having looked at the basic form of all three record request modes, we need to look in

more detail at the parameters being used.

Common Parameters

RequestParameters for all record requests include the following members:

m_flags See the values below.

m_permissionLevel See the values below.

m_maxResponseBlocks Maximum response list size.

m_requestBlockList List of Request Blocks.

m_subscribeParameters Options for subscribing to the

results of the request. See below.

Flags

Possible values for m_flags are:

FLAG_NONE No special action.

FLAG_IGNORE_ALIAS The Content Server database can

contain ‘alias’ records, which

allow mapping of a symbol to a

record with a different symbol. For

example, an alias might exist that

maps from DJI.CB to =DJI.CB (the

Dow Industrial Average). Normally,

if a GetEqual is made for DJI.CB,

the record for =DJI.CB is actually

returned (the alias lookup happens

implicitly). By setting

FLAG_IGNORE_ALIAS, this will not be

the case and instead you’ll receive

Confidential Page 23 10/6/2008

the DJI.CB record. This record just

contains a field containing the

symbol of the target of the alias –

in this case =DJI.CB. It is highly

unlikely client applications will

require FLAG_IGNORE_ALIAS.

Permission Level

Possible values for m_permissionLevel are:

PERMISSION_LEVEL_DEFAULT Return the requested symbols at the

default permission level for this

user. If the user is permissioned

for both realtime and delayed data

for a given symbol, the default

will usually be for realtime.

PERMISSION_LEVEL_REALTIME Return the requested symbols from

realtime tables, if the user is

permissioned accordingly.

PERMISSION_LEVEL_DELAYED Return the requested symbols from

delayed tables, if the user is

permissioned accordingly.

MaxResponseBlocks

The m_maxResponseBlocks member indicates the maximum number of response blocks

that should be returned in a single response. If the total response is too large to send in

one go, it will be sent as a multi-part response with a maximum of

m_maxResponseBlocks response blocks per partial response.

RequestBlockList

The m_requestBlockList member specifies the fields being requested. This is a list of

RequestBlock objects, each of which has the following members:

m_flags See the values below.

m_relationshipId The navigation relationship scoping

each field in the list.

m_fieldIdList The list of fields.

Flags

Possible values for m_flags are:

FLAG_NONE No special action.

FLAG_ALL_FIELDS Return all available fields for

this relationship Id (m_fieldIdList

is ignored).

Refer to 4.2 Using the Navigation Model in Requests for a discussion of canonical and

navigational requests and field scope. Canonical requests are made by specifying

RELATIONSHIP_ID_NONE. Navigation requests are made by specifying a valid

relationship Id value for m_relationshipId, this is then the scope of each field in the list.

Confidential Page 24 10/6/2008

Canonical and navigational requests can be mixed together in a request, just use

RELATIONSHIP_ID_NONE in one RequestBlock and valid relationship Ids in others.

The Content Gateway will fail requests if the same relationship Id appears in more than

one request block. It is never necessary to do this – just specify the additional fields you

require in the first block.

A record request takes a list of request blocks, and this list applies to all keys specified in

the request. For example, if you do a GetMultipleEqual on MSFT.Q and DELL.Q, the

same request blocks apply to both. If you need different request blocks for each key, you

must launch two separate requests.

The combination of a requested symbol and a request block is called a partial request.

The number of partial requests in a complete request is therefore equal to the product of

the number of requested symbols and the number of request blocks. The response will

have at least this number of response blocks (more if a one-to-many navigation link was

used).

Request-Specific Parameters

In addition to the common parameters, record requests need the following additional

parameters depending on request type.

GetFirst::RequestParameters

GetLast::RequestParameters

m_tableNumber The table number whose first or

last records should be returned.

m_numberOfRecords How many records to return.

GetNext::RequestParameters

GetPrevious::RequestParameters

m_symbolId GetNext and GetPrevious return the

previous or next record to the one

specified by this key.

m_numberOfRecords How many records to return.

GetEqual::RequestParameters

m_symbolId The key of the record that should

be returned.

GetMultipleEqual::RequestParameters

m_symbolIdList A list of keys for the records that

should be returned.

Confidential Page 25 10/6/2008

GetMultiplePatternMatch::RequestParameters

m_tableNumber The table number to search.

m_symbolPattern The string pattern to search for.

m_requestFlags REQUEST_FLAG_NONE

REQUEST_FLAG_WATCH as well as

returning the current records that

match the pattern, additionally

watch for new records that match

the pattern. Setting this option

requires subscribing to the results

of the request also.

REQUEST_FLAG_REVERSE_ORDER return

the results of the request in

reverse order.

GetMultiplePatternMatchList::RequestParameters

m_tableNumber The table number to search.

m_symbolPatternList A list of string patterns to search

for.

m_requestFlags REQUEST_FLAG_NONE

REQUEST_FLAG_WATCH as well as

returning the current records that

match the patterns, additionally

watch for new records that match

any of the patterns. Setting this

option requires subscribing to the

results of the request also.

REQUEST_FLAG_REVERSE_ORDER return

the results of the request in

reverse order.

GetMatch::RequestParameters

m_symbolId The (partial) key of the record

that should be searched for.

m_matchType As described in section 5.7:

MATCH_TYPE_COMPOSITE or

MATCH_TYPE_PRIMARY

GetMultipleMatch::RequestParameters

m_symbolIdList The (partial) keys of the records

that should be searched for.

m_matchType As described in section 5.7:

MATCH_TYPE_COMPOSITE or

Confidential Page 26 10/6/2008

MATCH_TYPE_PRIMARY

ResponseParameters

All record requests share a common response data format. There are no bespoke

parameters for any record request type. A ResponseParameters object contains the

following fields:

m_responseBlockList List of response blocks, described

below.

m_subscriptionCookie Subscription cookie, described

below.

The response format is somewhat complex, so the discussion is split into sub-sections

below.

Cookie

If subscription was used in the request, this cookie must be used when unsubscribing.

Otherwise it is set to SUBSCRIPTION_COOKIE_UNDEFINED.

For further discussion of subscription cookies, please see Subscription and Updates.

ResponseBlockList

The m_responseBlockList member contains the bulk of the response data as a list of

ResponseBlocks.

The Response Block is the most significant object in record data responses. It defines a

set of field data values for a particular partial request.

Typical responses include at least one response block for each RequestBlock in the

request. If, however, a one-to-many navigation link was used in a RequestBlock it will

generate multiple ResponseBlocks, one for each target of the navigation link.

Furthermore, GetMultipleEqual, GetMultipleMatch, GetMultiplePatternMatch and

GetMultiplePatternMatchList operations will return additional request blocks for each

requested symbol. It is easy to see that a „multiple‟ request which also uses one-to-many

navigation links can potentially lead to a large response.

Response blocks have the following format:

m_status The status of this block, described

below.

m_flags Described below.

m_resolvedKey The requested key, with valid table

number. Note the symbol in this key

may not match that provided to the

original request; various

transformations may take place on

the provided key to resolve it to

the actual key of a record in the

Confidential Page 27 10/6/2008

database.

m_responseKey The returned key. For canonical

requests (RELATIONSHIP_ID_NONE)

this will equal m_resolvedKey.

Otherwise, it is the target of a

navigation lookup on m_resolvedKey.

m_relationshipId The relationship Id of this part of

the response.

m_permissionId The permission group m_responseKey

is associated with.

m_permissionLevel The permission level of the

returned record.

m_permissionLevelData Data specific to different values

of m_permissionLevel. Currently if

m_permissionLevel is

PERMISSION_LEVEL_DELAYED, the

m_delayPeriod member of

m_permissionLevelData will contain

the amount of time (in minutes) the

returned data is delayed by.

m_fieldData The field data scoped by this

relationship Id.

Relating Response Data to your Request

A typical request may include many request blocks, using various different

relationshipIds and fields. Requests like GetMultipleEqual also provide a list of keys in

one step. The result can be a long list of response blocks.

Here are example request and response blocks for a GetMultipleEqual request for two

stocks. We ask for the last close price and a security level item, the current dividend

yield.

Requested key 1: MSFT.Q

Requested key 2: MMM.N

RequestBlock1:
m_flags FLAG_NONE

m_relationshipId RELATIONSHIP_ID_NONE

m_fieldIdList FID_CLOSE

RequestBlock2:
m_flags FLAG_NONE

m_relationshipId RELATIONSHIP_ID_SECURITY

m_fieldIdList FID_CURRENT_YIELD

As long as the request succeeds, the response blocks will look like this (ignoring table

numbers, which will be present in both of the key fields):

ResponseBlock1:
m_status STATUS_SUCCESS

m_flags FLAG_NONE

Confidential Page 28 10/6/2008

m_resolvedKey MSFT.Q

m_responseKey MSFT.Q

m_relationshipId RELATIONSHIP_ID_NONE

m_permissionId PERMISSION_ID_NASDAQ_LEVEL1

m_permissionLevel PERMISSION_LEVEL_REALTIME

m_fieldData 26.00

ResponseBlock2:
m_status STATUS_SUCCESS

m_flags FLAG_NONE

m_resolvedKey MMM.N

m_responseKey MMM.N

m_relationshipId RELATIONSHIP_ID_NONE

m_permissionId PERMISSION_ID_NYSE

m_permissionLevel PERMISSION_LEVEL_REALTIME

m_fieldData 139.35

ResponseBlock3:
m_status STATUS_SUCCESS

m_flags FLAG_NONE

m_resolvedKey MSFT.Q

m_responseKey MSFT.SEC

m_relationshipId RELATIONSHIP_ID_SECURITY

m_permissionId PERMISSION_ID_SECURITY

m_permissionLevel PERMISSION_LEVEL_REALTIME

m_fieldData 0.31

ResponseBlock4:
m_status STATUS_SUCCESS

m_flags FLAG_NONE

m_resolvedKey MMM.N

m_responseKey MMM.SEC

m_relationshipId RELATIONSHIP_ID_SECURITY

m_permissionId PERMISSION_ID_SECURITY

m_permissionLevel PERMISSION_LEVEL_REALTIME

m_fieldData 1.89

Each response block holds enough information to let you match it back to the relevant

part of the request. The combination of m_resolvedKey and m_relationshipId gives you

the relevant request block and requested symbol.

Significantly, the response block gives you the mapping of alias request key to canonical

response key. From the above, we now know that our (aliased) request for MSFT.Q,

RELATIONSHIP_ID_SECURITY led us to the canonical key MSFT.SEC. Similarly we

know that MMM.N, RELATIONSHIP_ID_SECURITY led us to MMM.SEC. This may

be important to us when we come to receive updates on MSFT.SEC and MMM.SEC,

since the updates are marked only with the canonical keys.

There are some further example request and response blocks in Appendix 1 - Example

RequestBlock and ResponseBlock usage.

Confidential Page 29 10/6/2008

Status

The status field applies only to this ResponseBlock. Remember that there is also a status

associated with the response as a whole. This is determined by calling

ContentGatewayClient::IsValidResponse().

m_status field can take any of the following values:
STATUS_SUCCESS This part of the request was

successful.

STATUS_SOURCE_NOT_FOUND The requested key could not be

found as a source for this

relationship Id.

STATUS_SOURCE_NOT_PERMISSIONED This user is not permissioned for

this source.

STATUS_RELATIONSHIP_NOT_FOUND The requested relationship could

not be found.

STATUS_RELATIONSHIP_NOT_PERMISSIONED This user is not permissioned to

use the requested relationship.

STATUS_NAVIGATION_NOT_FOUND No instances of the requested

relationship Id were found.

STATUS_NAVIGATION_NOT_PERMISSIONED The user is not permissioned to

use this instance of this

relationship.

STATUS_TARGET_NOT_FOUND The requested relationship was

found, an instance was found for

the requested key, but the target

of the instance does not exist.

STATUS_TARGET_NOT_PERMISSIONED The requested relationship was

found, an instance was found for

the requested key, but the user

is not permissioned to see the

target data.

STATUS_INVALID_SOURCE_TABLE An invalid table number was used

in a request.

STATUS_PERMISSION_LEVEL_NOT_AVAILABLE User has requested data from a

permission level that is not

configured in the Content

Gateway. Most likely requesting

delayed data when the Content

Gateway only provides realtime

data.

STATUS_QUOTA_LIMIT_NOT_SUBSCRIBED A user might be permissioned with

a limited number of allowed

subscriptions. This status would

be received if the user requested

a record with subscription but

was already subscribed to their

quota of symbols. The data in the

ResponseBlock is still good, but

no updates will be received.

STATUS_SUCCESS or STATUS_QUOTA_LIMIT_NOT_SUBSCRIBED indicates that the data in

this ResponseBlock is good.

Confidential Page 30 10/6/2008

To understand the relationship Id status values, bear in mind that a relationship Id defines

a mapping between a source symbol and a target symbol or symbols. The source symbol

is the one you specified in the request, the target is the one that the navigation walk leads

you to.

This mapping is held in a database table in the Content Server. When navigation

resolution takes place, either the source or the target of the mapping may be missing from

the table (STATUS_SOURCE_NOT_FOUND, STATUS_TARGET_NOT_FOUND), there may be

no entries at all for this relationship Id (STATUS_NAVIGATION_NOT_FOUND), or your user

Id may not be permissioned to use the relationships

(STATUS_NAVIGATION_NOT_PERMISSIONED). Finally, the ContentGateway may not

recognize the relationship Id that you have specified

(STATUS_RELATIONSHIP_NOT_FOUND) or your user Id may not be permissioned to use it

(STATUS_RELATIONSHIP_NOT_PERMISSIONED).

Flags

The m_flags member can have the following values:
FLAG_NONE No flags set.

FLAG_STALE Record image contains fields which

are potentially stale. Stale data

occurs when the Content Server

detects it has missed an update

from the incoming broadcast feed

(each record has an Update ID which

allows this to be detected). This

is unusual, but can occur

occasionally particularly with

satellite delivery during adverse

weather or solar conditions.

Field Data

m_fieldData is a self-describing but compressed block of field values and field-level

status. The same format is used for record updates. Please see 5.9 Parsing Field Data for a

full description of how to decode this data.

Relationship Id

The m_relationshipId value matches the relationship Id that you specified in the request

block.

Request and Response Keys

The m_resolvedKey field indicates to which requested symbol a particular response

block relates. You may have specified the requested symbol(s) directly (GetEqual or

GetMultipleEqual) or it may be implicit (GetFirst, GetNext, GetLast, GetPrevious,

GetMultiplePatternMatch, GetMultiplePatternMatchList). Note that m_resolvedKey

always includes the correct table number even if you did not specify it in the request.

Confidential Page 31 10/6/2008

The value of m_responseKey is the canonical key of the target data, regardless of

whether you made a canonical or aliased request. The fields in the response block always

refer to the m_responseKey. Again, m_responseKey always contains the correct table

number.

Aliasing, Responses and Update Handling

Earlier examples have shown that the response key in the response from an aliased

request may not match the key asked for in the request. For this reason, responses are

always marked with both the (aliased) request key (m_resolvedKey plus

m_relationshipId) and the (canonical) response key (m_responseKey).

Updates are marked with canonical keys only (it does not make sense to try to mark

updates with every possible alias which could refer to them). A client making a

subscription request generally needs to remember the mapping of alias to canonical key

as it cannot match updates to the related request without this knowledge. In the above

example, MSFT.Q was the requested symbol, yet updates will be received for

MMM.SEC as well as MSFT.Q.

Subscription and Updates

Receiving updates to records returned by an interactive request is controlled by the

m_subscribeParameters member of the RequestParameters classes. It is similar to the

subscription options available when using the SubscribeToFeed() method. Here are the

members of the SubscibeParameters class:

m_type TYPE_NONE do not subscribe (the

default)

TYPE_FULL receive all updates

TYPE_ADD_OR_DELETE receive only

record add or delete messages

TYPE_EVENT_TYPE_FILTER_INCLUDE_LIST

receive only

updates with event types specified

in m_eventTypeList

TYPE_EVENT_TYPE_FILTER_EXCLUDE_LIST

receive only updates with event

types not specified in

m_eventTypeList.

m_eventTypeList List of event types for

TYPE_EVENT_TYPE_FILTER_*_LIST

If the value of m_subscribeParameters.m_type is TYPE_NONE, users will receive a

„snapshot‟ of the data they requested, with no subsequent updates.

If two requests are made for the same symbol, one specifying a subscription type of

TYPE_EVENT_TYPE_FILTER_INCLUDE_LIST and one TYPE_EVENT_TYPE_

Confidential Page 32 10/6/2008

FILTER_EXCLUDE_LIST for the same event type, inclusion is given preference – i.e.

the client will receive any updates for that symbol.

The Gateway always guarantees coherency between the full record image returned in the

initial response and the subsequent data updates, i.e. there are no gaps in the data stream

(missed updates) and no duplicates (updates sent to you that had in fact already been

applied to the record at the time the full image was returned). This is extremely important

for downstream applications, especially if they perform cumulative calculations or trigger

actions based on received values.

If subscription was requested, a valid m_subscriptionCookie is returned in

ResponseParameters, provided the request succeeded. When the updates are no longer

desired, the subscription should be canceled by passing this cookie to on of the

unsubscribe methods in ContentGatewayClient.

This unsubscribe mechanism is designed to work correctly with both canonical and

navigation-based requests, even if the resolution of the navigation-based request has

changed since it was made (see Updating Navigation Links).

Partial Unsubscribe

Where a multiple symbol request has been made, Unsubscribe(cookie,

sourceSymbolIdList) may be used to unsubscribe from part of the result set.

Note - the granularity of partial unsubscribe is limited to those symbols specified in the

request; not those received in the response as part of a navigation walk. For example, if I

make a GetEqual request for =DJI.DJ but use navigation to retrieve all Dow Jones

Industrial constituents, I can unsubscribe from =DJI.DJ but not from individual

constituents. If on the other hand I make a GetMultipleEqual request for MSFT.Q and

IBM.N I can unsubscribe separately from either symbol.

Subscription information

It is possible to query the content gateway to retrieve the current active subscriptions.

This is accomplished using the ContentGatewayClient::GetSubscriptionInfo() method. It

takes two parameters. The first parameter is the permission level for which you wish to

retrieve the subscription information (currently

Feed::PERMISSION_LEVEL_REALTIME and

Feed::PERMISSION_LEVEL_DELAYED are supported). The second parameter is a

reference to a SubscriptionInfoList object. If the call is successful, the

SubscriptionInfoList object will be populated with all the symbols that are currently

subscribed at the given permission level and the number of times each symbol has been

subscribed.

Deletes

A delete is an update that has the FLAG_DELETE bit set. This informs the user that any

cached values for the deleted item should be invalidated, and that no further updates will

be received on the item.

Confidential Page 33 10/6/2008

Multi-Part Responses

Record requests based on GetMultipleEqual, GetMultiplePatternMatch,

GetMultiplePatternMatchList, GetMultipleMatch or aliased requests using one-to-many

navigation links can have large results sets. The ContentGateway may split these up and

send them to the client in multiple parts – this is termed a multi-part response. The

Content Gateway does this to protect other clients from being „locked out‟ by large

requests. The Gateway tries to give each connected client a fair share of its resources.

The effect of a multi-part response from the ActivContentGateway API programmer‟s

point of view depends on the request mode used. For synchronous requests, there is no

apparent difference as far as the programmer is concerned – the request call blocks until

all parts have been received and a single ResponseParameters object is returned with the

complete data set. (Remember that synchronicity is implemented purely on the client side

– the Content Gateway receives all requests asynchronously).

For Asynchronous requests, the Response callback will be called multiple times with the

same RequestId; that of the original request. The ContentGatewayClient provides the

IsCompleteResponse() method to allow you to test for the last part of a multi-part

response. Note that the decoder functions in the request helper classes do not clear the

ResponseParameters passed to them – you can pass the same ResponseParameters object

from each Response callback to build up the complete result set.

For the non-blocking synchronous case, the status code returned by the helper class

GetResponse() method is STATUS_CODE_PENDING if there is an additional part to be

retrieved. The user should continue to call GetResponse() until it returns

STATUS_CODE_SUCCESS or an error code.

5.8 Processing Record Updates

Both feed-level and interactive users receive record updates by overriding the virtual

ContentGatewayClient method OnRecordUpdate. Feed-level users also receive refreshes

this way.

See OnRecordUpdate() in DocumentationSample.

RecordUpdate

The RecordUpdate structure contains the following fields:
m_flags FLAG_NONE – nominal update

FLAG_DELETE – record has been

deleted

FLAG_STALE – some fields (other

than those in this update) may be

stale

FLAG_REFRESH – this update is a

complete refresh image of the

record containing all fields

Confidential Page 34 10/6/2008

FLAG_QUOTA_LIMIT_NOT_SUBSCRIBED –

this is a new record matching a

watch the user had open, but the

user has not been subscribed due to

hitting their subscription quota

m_symbolId Canonical key of the update.

m_updateId Update Id.

m_eventType Event type indicating the cause of

the update.

m_permissionId The permission group m_symbolId is

associated with.

m_permissionLevel The permission level of the

returned record.

m_permissionLevelData Data specific to different values

of m_permissionLevel. Currently if

m_permissionLevel is

PERMISSION_LEVEL_DELAYED, the

m_delayPeriod member of

m_permissionLevelData will contain

the amount in minutes the returned

data is delayed by.

m_fieldData The updated fields.

The m_symbolId is always the canonical key of the item being updated. Aliases are never

sent in updates.

m_updateId is a sequential counter which is incremented each time an update is sent.

m_eventType is an enumeration which indicates the cause of the update. See the header

file include/ActivContentPlatform/ActivFeedCommon/EventTypes.h for a current list.

Updates include only the fields that have changed, and this information is present in

m_fieldData, unless FLAG_REFRESH is set in which case all fields are present.

The RecordUpdate class provides the self-explanatory helper methods IsNewRecord()

and IsDelete().

The „stale‟ concept is described further here:

http://support.activfinancial.com/modules/smartfaq/faq.php?faqid=50

5.9 Parsing Field Data

Field data is sent as a self-describing but opaque data block. The format is the same

regardless of whether the data was sourced from a record response, an update or (for

feed-level users) a refresh message.

To decode the field data, use the FieldListValidator helper object. It accepts a reference

to the m_fieldData object of an update or response and provides the following

functionality:

- Parses the data into a map of field Id to field data and status

http://support.activfinancial.com/modules/smartfaq/faq.php?faqid=50

Confidential Page 35 10/6/2008

- Provides random access to fields via GetField(FieldId)

- Provides forward const iterator support through the fields

The validator caches the field data it parses, which then has a lifetime independent of the

m_fieldData used to initialize it. This means the validator can be retained as an efficient

field data cache even after you return from the function or callback where you received

the update message or response.

The access methods of the FieldListValidator return Field objects, which contain the

following members:

m_fieldId The Id of the field.

m_fieldStatus The status of this field.

m_rules Special rules which might apply to

this field.

m_pIFieldType An IFieldType pointer to the data.

Field status can have any of these values:

FIELD_STATUS_DEFINED The field data is good.

FIELD_STATUS_UNDEFINED The field has the explicit value

‘undefined’.

FIELD_STATUS_NOT_FOUND The field was not found.

FIELD_STATUS_NOT_PERMISSIONED The user was not permissioned to

access this field.

IFieldType * is a pointer to one of the basic field types supported in the ACTIV Content

Platform (these include numeric fields, string fields, binary arrays, datetime etc). The

field data classes are polymorphic, deriving from IFieldType which provides various

access and arithmetic functions. The sample application FieldTypesSample describes the

use of these classes in more detail.

See DisplayFieldData() in DocumentationSample for a simple example usage of

FieldListValidator.

Rather than construct a FieldListValidator object each time an update or response is

received, it is highly preferable to store a FieldListValidator (e.g. as a member of a class)

and reuse it with the Initialize() method to save construction time and make use of the

internal caching of IFieldType objects.

5.10 Time Series Requests

Time series data is collected by a Time Series Server (TSS); essentially it is a historical

series of the changes taking place to the records in the market data tables. However, in

addition to basic tick-by-tick and daily closing price series, the TSS maintains Intraday

Bar series of various periods. Client access to the TSS is via the ActivContentGateway

API.

Confidential Page 36 10/6/2008

The time series API offers separate functions for retrieving historical (i.e. closing price),

intraday and tick-by-tick data. There are various options for filtering (e.g. filtering out

irregular trades) and specifying the field list required in the response.

There is very flexible support for specifying time periods. Absolute time, trading or

calendar day counts, data point counts and data point addresses can be used in any

combination. This greatly simplifies making time series data requests for technical

analysis purposes.

Relationship Id navigation is not used in the time series request model. The returned data

always relates to the canonical key specified in the request.

There is no equivalent of feed-level access for the time series database – all requests are

interactive. Feed-level API users who need access to time series data can either

- use the interactive requests provided by the ActivContentGateway API, or

- maintain their own time series database from the record refresh and update

messages that they receive.

Note that ActivFeed carries record-based Corporate Actions information, including that

required to maintain a historical database (for example, details of share splits, dividend

payments and mergers).

Field Sets

The results of a time series request have different characteristics depending on whether

historical bars, intraday bars or tick-by-tick data is requested and are therefore

represented by separate objects with appropriate access methods. Currently Tick,

HistoryBar and IntradayBar objects are defined. These all derive from a common base,

FieldSet, which provides limited common functionality such as conversion of the data to

string form for debugging purposes.

Request Types

The following interactive requests return time series data:

- GetHistory

- GetIntraday

- GetTicks

These return closing price history series, intraday bar series of various periods, and tick-

by-tick data series respectively. The TSS can maintain a configurable amount of tick-by-

tick and intraday bar history (subject to available storage space). 10 years or more of

closing price history are available, depending on which stock is requested.

Common Characteristics

- Time series requests all take the same RequestParameters object. Some values

(e.g. field filters) are applicable to only some request types, as described in the

following sections. The Content Gateway fails requests that have invalid

parameter combinations.

Confidential Page 37 10/6/2008

- All three request types support both synchronous and asynchronous request

modes.

- All three request types support a GetFirst / GetNext style request mode. This

differs somewhat from the record request non-blocking synchronous

implementation, and is discussed further below.

Helper Classes

As is the case for record requests, there is a helper class for each time series request type,

and these are implemented as nested classes of ContentGatewayClient. The helpers make

correctly typed RequestParameters and ResponseParameters objects available and allow

requests to be initiated using any of the available request modes. They also provide

decoders for asynchronous responses.

Overrides

The ContentGatewayClient class provides the following virtual methods which may be

overridden to receive asynchronous time series responses:

virtual void OnGetFirstHistoryResponse(HeapMessage &response);

virtual void OnGetNextHistoryResponse(HeapMessage &response);

virtual void OnGetFirstIntradayResponse(HeapMessage &response);

virtual void OnGetNextIntradayResponse(HeapMessage &response);

virtual void OnGetFirstTicksResponse(HeapMessage &response);

virtual void OnGetNextTicksResponse(HeapMessage &response);

Example Time Series Requests

Here are some examples of typical time series requests which demonstrate the available

request types and the role of the helper classes.

Synchronous GetFirst / GetNext for Closing Price History

See DoSynchronousGetHistoryRequest() in DocumentationSample.

Asynchronous GetFirst / GetNext for Tick Series

See DoAsynchronousGetTickRequest(), OnGetFirstTicksResponse() and

OnGetNextTicksREsponse() in DocumentationSample.

Extracting Time Series Data

Once you have a valid ResponseParameters object you can extract the time series points

from the m_fieldSetList member. This is an stl vector where each entry is a Tick, a

HistoryBar or an IntradayBar depending on the request you made. It is normally

preferable to use a separate handler for each of these types, since each provides

functionality and accessors specific to the series being returned. For a simple example of

handling a tick series response, see DisplayFieldSetList() in DocumentationSample.

For full details of the access methods of Tick, HistoryBar and IntradayBar, please see the

relevant header files.

Confidential Page 38 10/6/2008

Request Modes for Time Series Requests

The synchronous and asynchronous behavior for time series requests is the same as for

record requests; the former blocks the caller‟s thread until the results are available,

returning these as out parameters; the latter returns immediately and the results are

delivered by an asynchronous callback at some later time.

There is no direct equivalent of non-blocking synchronous request mode for time series

requests. Instead there is a request mode (referred to as GetFirst/GetNext) which allows

the client to retrieve multi-part response messages whilst controlling the rate at which

time series data is received. This cookie-based mechanism is explained in the following

section.

TimeSeriesCookie

A time series request may specify a very large data set. For example, a request for 5 days

of tick data (quotes plus trades) for MSFT.Q may contain over a million data points.

There are two reasons why the initial response to a time series request may not contain

the full data set:

1. The Gateway imposes a limit on the size of responses, to protect other Feed API

clients against being „locked out‟ while the Gateway services a very large request.

2. It is good practice for Feed API application programmers to specify a maximum

response size when they make the request. The response will then contain at most

this number of data points. This allows the programmer to control the amount of

data received and avoid being „swamped‟.

In either case the return code of the initial time series request will be

STATUS_CODE_PENDING. The user needs to be a way to request the remainder of the

series, and this is supported by the use of TimeSeriesCookie.

All time series responses include a TimeSeriesCookie. This contains all of the state

necessary for the Content Gateway to continue a fetch operation where it left off. The

cookie allows the server side of time series requests to be implemented statelessly, which

enhances scaleability.

The time series request helper classes offer the methods SendGetNextRequest and

PostGetNextRequest which allow the next part of the dataset to be retrieved. Call either

of these quoting the cookie. They both return a further cookie and the next part of the

response. They return STATUS_CODE_SUCCESS if the final part of the response has

been retrieved, and STATUS_CODE_PENDING otherwise. The process should be

repeated until STATUS_CODE_SUCCESS (or an error code) is returned.

Because the server side of the request is stateless, there is no obligation on the

ActivContentGateway API programmer to complete the request in any particular time

frame, or indeed at all. The only proviso is that the data must still be in the database by

the time the cookie is used, otherwise the next part of the request will fail.

Confidential Page 39 10/6/2008

The synchronous method pair SendGetFirstRequest / SendGetNextRequest is similar in

some respects to the non-blocking synchronous request mode used in the record request

model.

There is no record request equivalent of the asynchronous PostGetFirstRequest /

PostGetNextRequest pair. Similarly, there is no time series equivalent of the

asynchronous multi-part responses that the Content Gateway supports for record requests

– additional time series response parts are never sent by the Content Gateway unless the

client explicitly requests them using a SendGetNextRequest or PostGetNextRequest call.

RequestParameters

All time series requests share the same parameter format, which has the following

structure:
m_symbolId The requested symbol.

m_flags Request flags.

m_maxFieldSets Max number of returned data points.

m_seriesType The series type, e.g. tick or intraday.

m_recordFilterType The record filter.

m_fieldFilterType The field filter.

m_periodList The range of data points to return.

m_delayPeriod Used internally; no need to set.

m_specifiedInterval For INTRADAY_SERIES_TYPE_SPECIFIED_MINUTE, the

bar period to use. Valid values are 1, 2, 3,

4, 5, 6, 10, 12, 15, 20, 30, 60

It is not necessary to specify a table number when setting m_symbolId – use
Feed::TABLE_NO_UNDEFINED.

Flags can be either FLAG_NONE or FLAG_REVERSE. The former causes results to be

returned in decreasing date order (i.e. most recent data point first), while the latter causes

the order to be reversed (oldest data point first).

A maximum of m_maxFieldSets data points will be returned from your request. If the

number of data points in the entire requested series exceeds this value, you can request

the remainder using GetNext with the cookie.

Series type can take the following values:
TICK_SERIES_TYPE Tick-by-tick data.

INTRADAY_SERIES_TYPE_1_MINUTE 1 Minute intraday bars.

INTRADAY_SERIES_TYPE_5_MINUTE 5 Minute intraday bars.

INTRADAY_SERIES_TYPE_SPECIFIED_MINUTE Variable period intraday bars.

HISTORY_SERIES_TYPE_DAILY Daily bars

HISTORY_SERIES_TYPE_WEEKLY Weekly bars

HISTORY_SERIES_TYPE_MONTHLY Monthly bars

Only history series types will be accepted for GetHistory requests, and only intraday

series types will be accepted by GetIntraday requests. GetTick requests currently have

only one possible series type.

Confidential Page 40 10/6/2008

RecordFilterType currently has values defined only for tick and intraday series:
TICK_RECORD_FILTER_TYPE_ALL Return all ticks.

TICK_RECORD_FILTER_TYPE_ALL_TRADES Return all trades but no

quotes.

TICK_RECORD_FILTER_TYPE_REGULAR_TRADES Return only ‘normal’ trades.

TICK_RECORD_FILTER_TYPE_ALL_QUOTES Return all quotes.

TICK_RECORD_FILTER_TYPE_ALL_BIDS Return all bid quotes.

TICK_RECORD_FILTER_TYPE_ALL_ASKS Return all ask quotes.

INTRADAY_RECORD_FILTER_TYPE_REGULAR_TRADES Return only ‘normal’ trades.

INTRADAY_RECORD_FILTER_TYPE_ALL Return all trades.

INTRADAY_RECORD_FILTER_TYPE_ALL_PLUS_VWAP Return all trades + VWAP.

The tick database records both quotes (separate asks and bids) and trades.

TICK_RECORD_FILTER_TYPE_REGULAR_TRADES excludes trade types such as

late trades, but the exact definition of what is included is exchange-specific.

FieldFilterType can take the following values:
INTRADAY_FIELD_FILTER_TYPE_FULL_BAR Full intraday bar.

INTRADAY_FIELD_FILTER_TYPE_MINI_BAR Reduced intraday bar.

HISTORY_FIELD_FILTER_TYPE_FULL_BAR Full history bar.

HISTORY_FIELD_FILTER_TYPE_MINI_BAR Reduced history bar.

There is no field filter for tick series. Mini bars include Date/Time, Open, High, Low,

Close and Volume values but exclude „value added‟ values such as VWAP-related fields.

Specifying Periods for Time Series

The range of data points in a time series request can be specified very flexibly using the

m_periodList member of the request parameters object.

m_periodList is a typedef for an stl vector, and can accept any number of Period objects.

Each period object has a PeriodType taken from the following selection:

PERIOD_TYPE_NOW Current time. A

PERIOD_TYPE_INFINITY Plus or minus infinity. A

PERIOD_TYPE_LOCAL_DATE_TIME Local date time. A

PERIOD_TYPE_UTC_DATE_TIME UTC date time. A

PERIOD_TYPE_LATEST_TRADING_DATE The most recent trading

date.

A

PERIOD_TYPE_TRADING_DAY_COUNT A count of trading

days.

R

PERIOD_TYPE_DATA_POINT_COUNT A count of data points. R

PERIOD_TYPE_DATA_POINT_ADDRESS The address of a

specific data point.

A

Periods are designated as absolute or relative, depending on whether their value denotes a

fixed point in the database. The third column of the above matrix denotes absolute types

by „A‟ and relatives by „R‟.

The rules for building a valid m_periodList are as follows:

Confidential Page 41 10/6/2008

1. Any number of Periods may be added to the list.

2. The first Period in the list defines the oldest data point in the request range.

3. The last Period in the list defines the youngest data point in the request range.

4. At least one absolute period must be specified.

5. No more than two absolute periods may be specified.

6. A relative period may not appear between two absolute periods.

7. There may be any number of relative periods before an absolute.

8. There may be any number of relative periods after an absolute.

9. If a sequence of more than one relative is adjacent to an absolute, the relatives are

applied in order of proximity to the absolute and the effect is cumulative.

The Content Gateway will validate the contents of the list and fail requests with invalid

combinations.

The idea is that the list is interpreted in chronological order, from the first entry to the

last. Absolute periods can be mapped onto fixed points in the time series database and

allow the meaning of relative periods to be understood as offsets. The offsets are before

the absolute period (going back in time) if the relative value appears in front of the

absolute in the list, and vice versa.

Here are some examples of the uses of the period list.

Two DateTimes

PeriodList entries (in order, top is first in list):
PeriodType Value

PERIOD_TYPE_LOCAL_DATE_TIME 20-JUL-1999

PERIOD_TYPE_LOCAL_DATE_TIME 20-JUL-2000

The time series will begin on 20 July 1999 (the least recent point) and run until 20 July

2000 (the most recent point). The Content Gateway will reject time series requests if the

specified Periods in the list are not in chronological order (oldest time is first in list).

Use now to get a series ending at the current time

PeriodList:
PeriodType Value

PERIOD_TYPE_LOCAL_DATE_TIME 1-JUN-2003 12:45

PERIOD_TYPE_NOW n/a

The time series will begin at 1-JUN-2003 12:45 and run until the latest point available in

the database at the time the request is processed.

Use a count to get additional data points

PeriodList:
PeriodType Value

PERIOD_TYPE_DATA_POINT_COUNT 50

PERIOD_TYPE_LOCAL_DATE_TIME 1-JUN-2003 12:45

PERIOD_TYPE_NOW n/a

Confidential Page 42 10/6/2008

The time series will run from 50 points before the point at 1
st
 June 2003 12:45pm until

the latest available point. This kind of request can be useful when performing technical

analysis on charts – for example, when calculating a 50 point moving average. To avoid

gaps in the display, 50 additional points are needed at the beginning of the main data

range. It is generally not possible to guess what DateTime to use to get these additional

points.

This case illustrates the mixture of relative and absolute periods in the list. Because it is

followed by 1-JUN-2003 12:45, the data point count is interpreted as an offset going back

in time from that date time.

Relatives may not appear between two absolutes. There is no sense in the following:

PeriodType Value

PERIOD_TYPE_LOCAL_DATE_TIME 1-MAR-2003 12:45

PERIOD_TYPE_DATA_POINT_COUNT 50

PERIOD_TYPE_LOCAL_DATE_TIME 1-JUN-2003 12:45

There may or may not be as many as 50 points between these two date times in the

database – the data point count is irrelevant either way, since the data range is

unambiguously established by the two absolute Periods.

Use minus infinity to retrieve all data

PeriodList:
PeriodType Value

PERIOD_TYPE_INFINITY n/a

PERIOD_TYPE_NOW n/a

The time series will contain the entire series held in the database.

Use plus infinity to request coherent real-time updates

PeriodList:
PeriodType Value

PERIOD_TYPE_TRADING_DAY_COUNT 1

PERIOD_TYPE_INFINITY n/a

The time series will contain all points from one trading day ago until now. In addition, a

subscription will be made for record updates on the specified symbol, and the Content

Gateway guarantees that the updates are coherent with the end of the returned time series.

Please note: the update feature is not implemented yet. To get real-time updates, please

subscribe to the real-time record as discussed in Section 5.7 of this document.

Use a specific data point address

PeriodList:
PeriodType Value

PERIOD_TYPE_DATA_POINT_ADDRESS <address returned by

TimeSeriesCookie>

PERIOD_TYPE_DATA_POINT_COUNT 100

Confidential Page 43 10/6/2008

The data point address of the last point in a series is available from the TimeSeriesCookie

object. The above request is a convenient way to request an additional 100 points of data

starting precisely where a previous request left off.

The best way to become familiar with the capabilities of the period list is to make some

trial requests using the ActivContentGatewayApiSample program.

ResponseParameters

The time series response parameters class has a single member m_fieldSetList, which is

an stl vector of HistoryBar, IntradayBar or Tick objects depending on the request made.

These objects derive from a common base class called FieldSet. FieldSet supports the

basic access functions GetField, SetField and GetType which allow the derived types to

be treated in a polymorphic way. Normally, however, the accessor methods of the derived

type should be used for efficiency and flexibility.

The following section gives a brief overview of the data available in each object.

HistoryBar

The HistoryBar class is used to store daily, weekly, and monthly data points. Fields

supported include date, open, high, low, close, total volume and VWAP fields (total

value, total price, and tick count).

All historical data available through the Content Gateway has split factors applied. Future

versions of the Content Platform and Feed API may represent aggregate dividend and

split adjustment fields in the bar, instead of adjusting the closing price.

Depending on request parameters, some fields may not be populated – specifically, the

VWAP related fields are not transmitted if the HISTORY_FIELD_FILTER_TYPE_MINI_BAR

filter is specified. Unused fields are not transmitted over the network.

Type Field Comment

Date m_date Date of bar.

Rational m_open Open.

Rational m_high High.

Rational m_low Low.

Rational m_close Close.

Rational m_totalPrice Sum of prices in bar.

Rational m_totalValue Sum of (price * size).

Rational m_totalVolume Total volume.

uint32_t m_tickCount Number of ticks in bar.

IntradayBar

Pre-built Intraday Bars are constructed by the Content Server from tick data for various

time intervals.

Type Field Comment

Confidential Page 44 10/6/2008

DateTime m_dateTime Date and time of bar.

Rational m_open Open.

Rational m_high High.

Rational m_low Low.

Rational m_close Close.

Rational m_totalPrice Sum of prices in bar.

Rational m_totalValue Sum of (price * size).

Rational m_totalVolume Total volume.

uint32_t m_tickCount Number of ticks in this

bar.

byte_t m_flag Trade type code.

Tick

The Tick class represent a single trade or quote made on an instrument.

Type Field Comment

byte_t[4] m_conditions Trade or quote

conditions.

DateTime m_dateTime Date and time of tick.

Rational m_price Price.

Rational m_size Size.

std::string m_exchange Exchange code.

TickType m_tickType Tick Type, see below.

Feed::UpdateId m_updateId Update Id, see below.

Valid tick types are:
TICK_TYPE_NONE Hidden tick.

TICK_TYPE_TRADE Trade.

TICK_TYPE_CORRECTED_TRADE Trade correction.

TICK_TYPE_DELETED_TRADE Trade delete.

TICK_TYPE_FILTERED_TRADE Trade price is marked suspect.

TICK_TYPE_FORM_T_TRADE Form T trade.

TICK_TYPE_BID Bid.

TICK_TYPE_ASK Ask.

5.11 Symbol Directory Requests

The Symbol Directory is a sub-process of the Content Gateway; it keeps track of all

instruments and certain fields which can be searched upon. Currently these fields are

FID_NAME (311) and FID_LOCAL_CODE (301). More fields will be added in due time.

The symbol directory API offers functions for searching instrument names and local

codes to get matching symbols. There is also an option to filter the matching symbols on

entity types.

Request Types

The following interactive requests return symbol directory data:

- GetSymbols

Confidential Page 45 10/6/2008

The GetSymbols is available in synchronous, asynchronous and non-blocking

synchronous modes.

Helper Classes

As is the case for record requests, there is a helper class for the symbol directory request

type, and this is implemented as a nested class of ContentGatewayClient. The helpers

make correctly typed RequestParameters and ResponseParameters objects available and

allow requests to be initiated using any of the available request modes. They also provide

decoders for asynchronous responses.

Overrides

The ContentGatewayClient class provides the following virtual method which may be

overridden to receive asynchronous symbol directory responses:

virtual void OnGetSymbolsResponse(HeapMessage &response);

Example Symbol Directory Requests

Here are some examples of typical symbol directory requests which demonstrate the

available request types and the role of the helper classes.

Synchronous Request Mode

See DoSynchronousGetSymbolsRequest() in DocumentationSample.

Asynchronous Request Mode

See DoAsynchronousGetSymbolsRequest() and OnGetSymbolsResponse() in

DocumentationSample.

Non-Blocking Synchronous Request Mode

See DoNonBlockingSynchronousGetSymbolsRequest() in DocumentationSample.

RequestParameters

The symbol directory request parameters format has the following structure:
m_fieldId The field id to search on

m_searchString The string to search with

m_filterType Type of request

m_matchType Whether to search for partial

matches or exact matches

m_entityTypeList List of entity types if entity type

filter request

Currently the only fields available to search on are FID_NAME (311) and FID_LOCAL_CODE

(301). Other fields to search on will be added, such as FID_ISIN (293).

When searching for a name, the symbol directory tries to match the string against all

words in the name, and a trailing wildcard character ("*") is not required. When

searching for a local code, the symbol directory tries an exact match on the local code.

Confidential Page 46 10/6/2008

m_filterType can be FILTER_TYPE_FULL, FILTER_TYPE_ENTITY_TYPE_INCLUDE_LIST

or FILTER_TYPE_ENTITY_TYPE_EXCLUDE_LIST.

FILTER_TYPE_FULL will perform no filtering on the results and is the default,

FILTER_TYPE_ENTITY_TYPE_INCLUDE_LIST will only include entity types in the list and

FILTER_TYPE_ENTITY_TYPE_EXCLUDE_LIST will exclude entity types in the list from the

response.

m_matchType can be MATCH_TYPE_ANY to perform partial matches on the provided string,

or MATCH_TYPE_EXACT for an exact match. The default is MATCH_TYPE_ANY.

ResponseParameters

The symbol directory response parameters format has the following structure:
m_fieldId The field id to search on

m_symbolResponseList List of SymbolResponse objects

The SymbolResponse object represents one instrument that matched the request and has

the following structure:
m_symbolId The matching symbol

m_flags Response flags

m_matchData The entire field which had a

successful match

m_entityType The entity type of the instrument

The symbol can be used in subsequent calls to the Content Gateway, such as GetEqual.

Flags can be FLAG_NONE or FLAG_SAME_AS_LAST. They are used internally and can be

safely ignored.

The match data will be the entire field, specified by the field id in the response

parameters (i.e. Name or local code currently), which matched the request.

5.12 News Server Requests

The News Server stores all news stories for up to 12 months allowing the user to perform

searching using various parameters. Access to the news server is via the Content

Gateway, using the ActivContentGateway API.

The news server API offers functions for searching for news stories via word matching

with logical operators, symbol matching and date, magazine, category and supplier

filtering. You can also specify which fields of the news story you would like returned, the

number of news stories returned, and which symbol to start the searching from (for a

follow up, get next type request). You can also subscribe to a news query so subsequent

news stories which match your query will be received via the OnNewsUpdate() callback.

Request Types

The following interactive requests return news server data:

Confidential Page 47 10/6/2008

- GetNewsStories

The GetNewsStories request is available in synchronous, asynchronous and non-blocking

synchronous modes.

Helper Classes

As is the case for record requests, there is a helper class for the news server request type,

and this is implemented as a nested class of ContentGatewayClient. The helper makes

correctly typed RequestParameters and ResponseParameters objects available and allows

requests to be initiated using any of the available request modes. It also provides a

decoder for asynchronous responses.

Overrides

The ContentGatewayClient class provides the following virtual methods which may be

overridden to receive asynchronous news server responses or updates for a subscription

request:
virtual void OnGetNewsStoriesResponse(HeapMessage &response);

virtual void OnNewsUpdate(HeapMessage &response);

Example News Server Requests

Here are some examples of typical news server requests which demonstrate the available

request types and the role of the helper classes.

Synchronous Request Mode

See DoSynchronousNewsServerRequest() in DocumentationSample.

Asynchronous Request Mode

See DoAsynchronousNewsServerRequest() and OnGetNewsStoriesResponse() in

DocumentationSample.

Non-Blocking Synchronous Request Mode

See DoNonBlockingSynchronousNewsServerRequest() in DocumentationSample. This

example also shows how to subscribe to new stories matching the query; see

OnNewsUpdate() for an example of processing these updates.

RequestParameters

The news server request parameters format has the following structure:
m_query The query

m_startDate The start date of the search

m_endDate The end date of the search

m_startSymbol The symbol to start the search from

m_numberOfRecords The number of records to return

m_maxRecordsPerResponse Maximum number of records in each

response

m_fieldIdList The field id list to return

m_flags FLAG_NONE – Nominal request

Confidential Page 48 10/6/2008

FLAG_SUBSCRIBE – Subscribe to this

query

m_permissionLevel Requested permission level

m_query is the query to specify what stories you wish to be returned. It can contain tags

and operators for those tags. The operators are 'AND OR NOT ()', e.g.

'body=(microsoft OR apple) AND NOT ibm'. Note that the NOT operators can only

be ANDed. To retrieve every story, use * (an asterisk). Tags are specified as: tag=value.

Valid tags are:

body Query a news story body.

cat Query the category code.

head Query the headline.

magazine The magazine to search on.

newssymbol The actual symbol of a story.

supplier The supplier of news stories to

search on.

symbol A stock symbol referenced in a

story.

Here are some example queries:
 cat=industrial AND symbol=IBM.

 magazine=(DJDN or BIZ) AND symbol=MSFT. AND body=report

 body=(apple AND intel)

 head=yahoo

 newssymbol=241b3044%BIZ

 supplier=comtex

m_startSymbol is used to specify where to start the search from and should be populated

with the last symbol received from a previous request (see below). All other fields in the

request should be the same as the initial request, this is to approximate a GetNext type

request.

The news server response parameters format has the following structure:
m_subscriptionCookie Subscription cookie.

m_storyList List of returned stories.

m_subscriptionCookie will be populated if the request had the subscription flag set; it

can be used to unsubscribe from the query using the Unsubscribe() method. It is also used

in news updates to identify which query the update matched (see below).

Each entry in m_storyList represents one news story that matched the query and has the

following structure:
m_symbol The news story symbol symbol

m_permissionIdList List of permissions for this story

m_fieldData The field data of the story

Confidential Page 49 10/6/2008

m_symbol can be used in subsequent calls to retrieve more fields, or used in

m_startSymbol.

The news update format has the following structure:

m_flags Update flags

m_newsStory The news story

m_updateId Update id

m_subscriptionCookieList List of subscription cookies this

news story matches

m_newsStory has the same structure as each entry in m_storyList above.

m_subscriptionCookieList will contain a subscription cookie for each request you

made that this news story matches. This can be used to work out which news stories

match which query, by matching against the subscription cookies returned in the response

(see above).

News Story Specific Fields

- FID_LANGUAGE - the language of the news story e.g. „en‟, „fr‟, „en-us‟.

- FID_CHARACTER_SET - the character set of the news story that should be used to

display the story e.g. „ISO-8859-1‟.

- FID_PREVIOUS_NEWS_SYMBOL, FID_NEXT_NEWS_SYMBOL - for those sources that

allow news stories to be linked together these two fields refer to the previous and

next symbol. This is usually to provide further updates to a breaking story or to

shorten larger stories. (Presently only supported by Dow Jones.)

- FID_NEWS_STATE - contains state information about the news story (see

Enumerations.h). The NEWS_STATE_HOT indicator is used to identify an important

story, like a news flash. The NEWS_STATE_TEMPORARY indicator is for stories that

should not be archived. The NEWS_STATE_DISABLE_NEWS_ALERT indicator is for

stories that should not create a news alert, this is for less important stories.

- FID_EXPIRATION_DATE - is the date the story should be removed, and only

applies to temporary news stories.

5.13 Metadata Requests

Using the ActivContentGateway API, you can access metadata about the feed itself.

These metadata methods are available in the MetaData nested class of

ContentGatewayClient.

Currently supported are the following:

 Getting a list of the permission ids your user id can access, and the fields you have

access to within each permission id: GetPermissionInfo()

 A list of all tables that data can be requested from: GetTableInfoList()

 A detailed specification of a particular table containing a list of the fields in that

table, along with the type of each field (unsigned int, rational, etc.):

GetTableSpecification()

Confidential Page 50 10/6/2008

 A list of all navigational relationships that are available, or those that are available

for a particular source context: GetRelationshipInfoList()

 A list of all the field ids currently available on the feed, along with a description of

the field, its type and the C++ name for the field: GetUniversalFieldHelperMap()

 Information about a particular field id: GetUniversalFieldHelper()

As usual, the ActivContentGatewayApiSample demonstrates each of these methods.

Additionally, the MetaDataSample can use the metadata methods to generate up-to-date

copies of the FieldIds.h, RelationshipIds.h and TableNumbers.h header files. This may be

useful when new content is added to the feed and you do not wish to hardcode any new

table numbers or field ids in your code.

Note that only synchronous mode is supported for metadata requests so as such they

should not be called regularly or in time critical code. The intention is they would be used

on startup, or maybe once after a successful logon.

An exception to this is the field metadata methods, which cache the field information

locally in your ContentGatewayClient once retrieved from the ContentGateway. In this

case, it is safe to use the field metadata APIs as a replacement for the FieldIds.h interface

(which is static and can only return useful information about fields known at the time the

ActivContentGateway API was compiled).

5.14 Important Auxiliary Classes and Types in the
ActivContentGateway API

Here is a short description of some other important auxiliary classes and types in the

ActivContentGateway API.

Feed::TableNo
typedef uint16_t TableNo;

Identifies a market data table or time series data table within the content platform.

Feed::FieldId
typedef uint16_t FieldId;
FieldId identifies a field in an Activ Content Server data table.

Feed::RelationshipId
typedef uint16_t RelationshipId;

Identifies a navigation relationship.

Feed::PermissionId
typedef uint16_t PermissionId;

Identifies the permission group a record is associated with. For example,

PERMISSION_ID_NASDAQ_LEVEL1.

Feed::Context
typedef uint16_t SymbolContext;

Confidential Page 51 10/6/2008

Context Identifiers are used by the Content Gateway to assist with navigation lookups,

and may be regarded as opaque by the application programmer. Each symbol in the data

universe belongs to exactly one context, which is represented by a context Id.

ContentGatewayApi::SymbolId

SymbolId represents a fully qualified key. „Fully qualified‟ means that the correct table

number is present.

Table number is the market data table where the specified symbol resides. Responses

always contain a valid value for table number, but it is not mandatory to specify one

when you make a request.

Confidential Page 52 10/6/2008

6.0 References

[1] ActivContentPlatformOverview.pdf. Find this in the docs/ActivContentPlatform

directory of your SDK.

[2] Discussion Paper - In Search of Unique Instrument Identifier

 Szeto, Iman et al.

 Reference Data User Group (RDUG)

 &

 Reference Data Coalition (REDAC).

 June 2003

[3] The C++ Standard Library. A Tutorial and Reference.

 Josuttis, Nicolai M.

 Addison-Wesley 1999.

 ISBN 0-201-37926-0

Confidential Page 53 10/6/2008

Appendix 1 - Example RequestBlock and ResponseBlock usage

Here are some further examples which illustrate the use of request and response block.

Note not all members of the RequestBlock and ResponseBlock classes are shown; only

those of interest.

1. A simple GetEqual request for “MSFT.Q” for fields ASK and BID.

Requested Key : MSFT.Q

RequestBlock:
m_flags FLAG_NONE

m_relationshipId RELATIONSHIP_ID_NONE

m_fieldIdList FID_ASK, FID_BID

ResponseBlock:

m_status STATUS_SUCCESS

m_resolvedKey MSFT.Q

m_responseKey MSFT.Q

m_relationshipId RELATIONSHIP_ID_NONE

m_fieldData 26.89, 26.91

This is a canonical request, so the resolved keys and response keys are equal and the

relationship used is RELATIONSHIP_ID_NONE. There is only one response block,

matching the single canonical request block.

2. An aliased (navigation-based) GetEqual request for the close price of each Dow

Jones Industrial Average constituent:

Requested Key: =DJI.DJ

RequestBlock:
m_flags FLAG_NONE

m_relationshipId RELATIONSHIP_ID_LISTING

m_fieldIdList FID_CLOSE

ResponseBlock1:
m_status STATUS_SUCCESS

m_resolvedKey =DJI.DJ

m_responseKey MMM.N

m_relationshipId RELATIONSHIP_ID_LISTING

m_fieldData 141.4

ResponseBlock2:
m_status STATUS_SUCCESS

m_resolvedKey =DJI.DJ

m_responseKey AA.N

m_relationshipId RELATIONSHIP_ID_LISTING

m_fieldData 26.71

Confidential Page 54 10/6/2008

ResponseBlock3:
m_status STATUS_SUCCESS

m_resolvedKey =DJI.DJ

m_responseKey MO.N

m_relationshipId RELATIONSHIP_ID_LISTING

m_fieldData 40.99

… and so on for the remaining 27 constituents.

This was an aliased request, so the request and response keys do not match.

3. A canonical GetMultiplePatternMatch request for latest trade prices for anything

matching “MSFT”.

Requested Pattern: MSFT*

RequestBlock:
m_flags FLAG_NONE

m_relationshipId RELATIONSHIP_ID_NONE

m_fieldIdList FID_TRADE

ResponseBlock1:
m_status STATUS_SUCCESS

m_resolvedKey MSFT.

m_responseKey MSFT.

m_relationshipId RELATIONSHIP_ID_NONE

m_fieldData 26.89

ResponseBlock2:
m_status STATUS_SUCCESS

m_resolvedKey MSFT.A

m_responseKey MSFT.A

m_relationshipId RELATIONSHIP_ID_NONE

m_fieldData 26.87

ResponseBlock3:
m_status STATUS_SUCCESS

m_resolvedKey MSFT.C

m_responseKey MSFT.C

m_relationshipId RELATIONSHIP_ID_NONE

m_fieldData 26.89

… and so on for all further symbols that begin with “MSFT”.

This was a canonical request, but the request specified (indirectly) multiple symbols, so

there are multiple response blocks. The response keys together indicate the list of

matches made by the Content Gateway for the “MSFT*” pattern.

4. An aliased GetMultipleEqual request for the current yield of the primary

Microsoft Corp. and 3M Corp. securities traded on NASDAQ and NYSE

respectively.

Confidential Page 55 10/6/2008

Requested Key 1: MSFT.Q

Requested Key 2: MMM.N

RequestBlock:
m_flags FLAG_NONE

m_relationshipId RELATIONSHIP_ID_SECURITY

m_fieldIdList FID_CURRENT_YIELD

ResponseBlock1:
m_status STATUS_SUCCESS

m_resolvedKey MSFT.Q

m_responseKey MSFT.SEC

m_relationshipId RELATIONSHIP_ID_SECURITY

m_fieldData 0.31

ResponseBlock2:
m_status STATUS_SUCCESS

m_resolvedKey MMM.N

m_responseKey MMM.SEC

m_relationshipId RELATIONSHIP_ID_SECURITY

m_fieldData 1.89

(The security keys in the results above are fictitious values used only for the purposes of

example.)

There are two response blocks. This is because there were two symbols in the request but

only one request block, and the navigation link used was one-to-one.

The m_resolvedKey value allows us to relate the response blocks back to the requested

symbols.

An excellent way to become familiar with the response format is to try out some sample

requests using the ActivContentGatewayApiSample program, which ships as part of the

ActivFeed API SDK.

Confidential Page 56 10/6/2008

Appendix 2 - Symbology Reference

Exchange provided ticker symbols are always part of the symbol and are typically used

without alteration. Generally, a LocalCode field will also be provided in the database

record that only contains the exchange provided ticker symbol. Most symbols contain the

exchange delimiter „.‟ (dot) followed by the exchange code (see section A at the end of

this document). The exchange portion of the symbol need not be at the end of the symbol

(e.g. Market Market Quotes).

A2.1 Equities

<Issue Symbol>.<Exchange Code>

Examples: IBM.N, MSFT.Q

Composite U.S. equity symbols have no exchange code, but end in a period:

Examples: IBM.

A2.2 Equity Options

Option Roots

<Root Symbol>.<Exchange Code>

Examples: MSQ.OCC

Option Deliverables

<Root Symbol>#<Index Number>.<Exchange Code>

The index number is present only to ensure uniqueness of the symbol in cases where

multiple deliverable records are associated with an option root. Exchange code is the

same as that of the associated option root symbol.

Examples: MSQ#1.OCC

Option Contracts

<Root Symbol>/<Month Code>/<Strike Price Code>.<Exchange Code>

Examples: IBM/A/A.AO, MSQ/A/A.XO

Confidential Page 57 10/6/2008

A2.3 Futures

<Root Symbol>/<Year><Month Code>.<Exchange Code>

Examples: C/08H.CB, LC/08Z.CM

A2.4 Future Options

<Root Symbol>/<Year><Month Code>/<Strike Price ><Put/Call>.<Exchange Code>

Examples: C/8G/24000C.CB, LH/8G/42000P.CM

A2.5 Future Spreads

<Root Symbol>/<Year1><Month Code1>–<Year2><Month Code2>.<Exchange Code>

Examples: C/08H-08K.CB, LH/08J-08K.CM

A2.6 Market Makers

<Underlying Symbol>:<Market Maker Id>

Examples: MSFT.Q:LEHM, INTC.Q:ISLD

A2.7 Order Book

<Underlying Symbol>;<Order Id>

A2.8 Exchange Traded Funds

< Underlying Symbol >.<Exchange Code>

Examples: NIR.A, ONEQI.Q

Confidential Page 58 10/6/2008

A2.9 Forex

Spots

<Base Currency><Value Currency>.<Exchange Code>

Examples: USDGBP.TF, AUDEUR.TF

Spot quotes

<Base Currency><Value Currency>.<Exchange Code>:<Market Maker Id>

Examples: USDGBP.TF:BARC, CADDKK.TF:DRES

Forwards

<Base Currency><Value Currency>/<Forward Code>.<Exchange Code>

where Forward Codes is one of:

ON - Overnight

SN - Spot Next

TN - Tomorrow Next

<Number><Duration> where <Duration> can be one of:

W - Weeks

M - Months

Y - Years

Examples: USDGBP/1W.TF, CHFEUR/2Y.TF

Forward quotes

<Base Currency><Value Currency>/<Forward Code>.<Exchange Code>:<Market Maker

Id>

Examples: NZDHKD/TN.TF:UBSW

A2.10 Index

=< Issue Symbol>.<Exchange Code>

Examples: =COMP.Q, =XAX.A

Confidential Page 59 10/6/2008

A2.11 Mutual Fund

<Fund Id>.<Exchange Code>

Examples: BMCGX.Q, JAMFX.Q

A2.12 Money Market

<Fund Id>.<Exchange Code>

Examples: AALXX.Q, ITTXX.Q

A2.13 Rankings

CUMVAL/ACT+<Exchange Code>

Contains the top 20 most active equities based on cumulative value.

CUMVOL/ACT+<Exchange Code>

Contains the top 20 most active equities based on cumulative volume.

PERCENT/ADV+<Exchange Code>

Contains the top 20 advancing equities based on percent change.

PERCENT/DEC+<Exchange Code>

Contains the top 20 declining equities based on percent change.

Example: CUMVAL/ACT+Q, CUMVOL/ACT+Q, PERCENT/ADV+Q,

PERCENT/DEC+Q

A2.14 Exchange Statistics

ISSUES/DAY+<Exchange Code>

Contains the number of equities that are up/down/unchanged on the day.

ISSUES/TICK+<Exchange Code>

Contains the number of equities that are up/down on the last tick.

CUMVAL/DAY+<Exchange Code>

Contains the cumulative value of equities that are up/down/unchanged on the day.

CUMVOL/DAY+<Exchange Code>

Contains the cumulative volume of equities that are up/down/unchanged on the day.

Confidential Page 60 10/6/2008

Examples: ISSUES/DAY+Q, ISSUES/TICK+Q, CUMVAL/DAY+Q,

CUMVOL/DAY+Q

TICK+<Exchange Code>

Number of advancing equities - Number of declining equities.

TRIN+<Exchange Code>

(Number of advancing equities / Number of declining equities) / (Advancing cumulative

volume / Declining cumulative volume).

Examples: TICK+Q, TRIN+Q

A2.15 News Stories

< News ID > /HL% <Magazine>

Example: 090b5625/HL%BIZ

A2.15 News Story

< News ID > % <Magazine>

Example: 090b5625%BIZ

Confidential Page 61 10/6/2008

Appendix 3 - Exchange List

Exchange Name Exchange Code

AMEX A

AMEX Options AO

BSE B

BOX BO

Bovespa BS

NSX C

CBOT CB

CBOT Globex CBE

Instinet CBX

CBOE Futures Exchange CF

CME CM

CME Globex CMG

CNQ Exchange CQ

COMEX CX

COMEX Globex CXA

DME DME

NYSE Arca ECN EA

BATS EB

INET ECN EI

Eurex EX

FSE FU

HKFE HF

HKEX HK

ICE ICE

JASDAQ JQ

KCBT KC

KCBOT Globex KCE

LSE L

LIFFE LI

LME LM

Montreal Exchange M

Confidential Page 62 10/6/2008

MGEX MG

MGEX Globex MGE

Chicago Stock Exchange MW

NYSE N

ICE NB

ICE Electronic NBE

NSE NG

NYSE Best Quotes NQ

NYMEX NX

NYMEX Clearport NXC

NYMEX Europe Electronic NXE

NYMEX Globex NXG

NYMEX Europe NXL

US Options Composite O

NYSE Open Book OB

One Chicago OC

OSE OS

Euronext Paris P

NYSE Arca PA

NYSE Arca Options PO

Pink Sheets PS

Pure Trading PT

NASDAQ Q

NASDAQ - Bulletin Board QB

NASDAQ - ADF QD

NASDAQ OTC QO

OTCQX QX

SGX SG

SSE SP

TSE T

TOCOM TC

Tenfore TF

TSX TO

Confidential Page 63 10/6/2008

TSX Venture TV

US Composite US

CBSX W

WCE WC

PHLX X

PBOT XB

Eurex XEUR

PHLX Options XO

ISE Y

This exchange list is subject to change, the latest exchange list can be extracted from

TABLE_NO_EXCHANGE (37). An example of how to do this using one of the

ContentGateway API samples is shown below:

SnapshotViewer_x86_win32_vc71_mss.exe –u username –p password –t 37 –f

456;311 –o exchanges.txt

Confidential Page 64 10/6/2008

Appendix 4 - Event Types

This appendix describes each of the event types used on ACTIV Feed and the fields

associated with each event. The definition of event type can be found in the header file

include/ActivContentPlatform/ActivFeedCommon/EventTypes.h (included as part of the

ActivFeed API SDK), together with details of all allowed values for this field. Every

update message disseminated on ACTIV Feed includes an event type. Some of the events

have a specific set of fields associated with them which will always be included in a

message. However, messages with these event types may also contain other fields besides

the event specific set. Additionally, DCSes can be configured such that only the changed

fields are forwarded (i.e. there would be no guarantee for a given event type that field N

is always present).

A4.1 EVENT_TYPE_NONE

Used when there is no specific event associated with the message.

Fields always present:

None.

A4.2 EVENT_TYPE_TRADE

Indicates that a trade has occurred.

Fields always present:

FID_TRADE

FID_TRADE_CONDITION

FID_TRADE_DATE

FID_TRADE_EXCHANGE (only present for composite symbols)

FID_TRADE_SIZE

FID_TRADE_TIME

The following fields are also always present if they exist in the table that was updated by

the message:

FID_TRADE_BUYER_ID

FID_TRADE_SELLER_ID

A4.3 EVENT_TYPE_TICK

Tick events are used when the trade fields associated with an instrument are updated at

fixed time intervals. A good example of an instrument type that would have tick events

rather than trade events is index.

Fields always present:

Confidential Page 65 10/6/2008

FID_TRADE

FID_TRADE_CONDITION

FID_TRADE_DATE

FID_TRADE_SIZE

FID_TRADE_TIME

A4.4 EVENT_TYPE_TRADE_CORRECTION

Indicates that a previous trade was reported incorrectly and includes the corrected values

for the fields.

Fields always present:

FID_TRADE

FID_TRADE_CONDITION

FID_TRADE_DATE

FID_TRADE_SIZE

FID_TRADE_EXCHANGE (only present for composite symbols)

FID_TRADE_TIME

A4.5 EVENT_TYPE_TRADE_CANCEL

Indicates that a previously reported trade has been cancelled.

Fields always present:

FID_TRADE

FID_TRADE_CONDITION

FID_TRADE_DATE

FID_TRADE_EXCHANGE (only present for composite symbols)

FID_TRADE_SIZE

FID_TRADE_TIME

A4.6 EVENT_TYPE_TRADE_NON_REGULAR

Indicates that the information contained in the message is for a non-regular trade. An

example of a non-regular trade would be a late trade. This event type was formerly called

the now deprecated EVENT_TYPE_TRADE_LATE.

Fields always present:

FID_TRADE

FID_TRADE_CONDITION

FID_TRADE_DATE

FID_TRADE_EXCHANGE (only present for composite symbols)

Confidential Page 66 10/6/2008

FID_TRADE_SIZE

FID_TRADE_TIME

In the cash of late reported trades, the update message will include rules information for

each of these fields that indicates that the value received in the message should not

overwrite any cached (i.e. latest) value.

A4.7 EVENT_TYPE_BBO_QUOTE

Indicates that the message contains best bid/offer information.

Fields always present:

If any of the bid fields have changed as a result of an update then all of the following

fields will be present in the resulting message:

FID_BID

FID_BID_CONDITION

FID_BID_EXCHANGE (only present for composite symbols)

FID_BID_SIZE

FID_BID_TIME

If any of the ask fields have changed as a result of an update then all of the following

fields will be present in the resulting message:

FID_ASK

FID_ASK_CONDITION

FID_ASK_EXCHANGE (only present for composite symbols)

FID_ASK_SIZE

FID_ASK_TIME

If either a bid or an ask field has changed then the following fields will also be included

in the message:

FID_QUOTE_DATE

A4.8 EVENT_TYPE_QUOTE

Indicates that the message contains the latest bid and ask information for a particular

market maker.

Fields always present:

Exactly the same as detailed in EVENT_TYPE_BBO_QUOTE.

Confidential Page 67 10/6/2008

A4.9 EVENT_TYPE_COMPOSITE_BBO_QUOTE

Used internally in the system between the Upstream and Downstream content servers.

This event type if forwarded by the Downstream Content Server as an

EVENT_TYPE_BBO_QUOTE message and is processed in exactly the same way.

Fields always present:

Exactly the same as detailed in EVENT_TYPE_BBO_QUOTE.

A4.10 EVENT_TYPE_CLOSING_QUOTE

Used internally in the system between the Upstream and Downstream Content Servers to

indicate that a market maker has stopped quoting for the day. It also includes the last

values for the quote fields. This event type is forwarded by the Downstream Content

Server as an EVENT_TYPE_QUOTE message.

Fields always present:

Exactly the same as detailed in EVENT_TYPE_BBO_QUOTE.

On receipt of this event type, the Downstream Content Server will indicate that the quote

has closed by setting the STATE_BIT_CLOSED (see Enumerations.h) in the

FID_STATE field (field id 361). It will also set the following fields:

FID_CLOSING_BID

FID_CLOSING_ASK

FID_CLOSING_QUOTE_DATE.

If this results in a change to the value of one of these fields, it will also be included in the

update message.

A4.11 EVENT_TYPE_CLOSING_BBO_QUOTE

Used internally in the system between the Upstream and Downstream Content Servers to

indicate that an instrument has stopped quoting for the day. It also includes the last values

for the quote fields. This event type if forwarded by the Downstream Content Server as

an EVENT_TYPE_BBO_QUOTE message.

Fields always present:

Exactly the same as detailed in EVENT_TYPE_BBO_QUOTE.

On receipt of this event type, the Downstream Content Server will set the following

fields:

FID_CLOSING_BID

Confidential Page 68 10/6/2008

FID_CLOSING_BID_EXCHANGE (only present for composite symbols)

FID_CLOSING_ASK

FID_CLOSING_ASK_EXCHANGE (only present for composite symbols)

FID_CLOSING_QUOTE_DATE.

If this results in a change to the value of one of these fields, it will also be included in the

update message.

A4.12 EVENT_TYPE_OPEN

Indicates that the instrument has opened.

Fields always present:

None.

On receipt of this event type, the Downstream Content Server will clear the Closed bit in

the FID_STATE field to indicate that the instrument is now open.

See Enumerations.h for definitions of the State field.

A4.13 EVENT_TYPE_CLOSE

Indicates that the instrument has closed.

Fields always present:

None.

On receipt of this event type, the Downstream Content Server will set the following

fields:

FID_CLOSE

FID_CLOSE_DATE

FID_CLOSE_EXCHANGE (only present for composite symbols)

FID_CLOSE_STATUS

The following fields will also be set but are only applicable for certain instrument types:

FID_CLOSE_CONDITION

FID_CLOSE_CUMULATIVE_VALUE

FID_CLOSE_CUMULATIVE_VALUE_STATUS

FID_CLOSE_CUMULATIVE_VOLUME

FID_CLOSE_CUMULATIVE_VOLUME_DATE

FID_CLOSE_CUMULATIVE_VOLUME_STATUS

Confidential Page 69 10/6/2008

If this results in a change to the value of one of these fields, it will also be included in the

update message.

The Downstream Content Server will also set the Closed bit in the FID_STATE field to

indicate that the instrument is now closed.

See Enumerations.h for details on how to interpret the Status fields and for definitions of

the State field.

A4.14 EVENT_TYPE_RESET

Used to initiate the archiving and clear down of certain fields in readiness for the next

trading day.

Fields always present:

FID_RESET_DATE

On receipt of this event type, the Downstream Content Server will set the following

fields:

FID_PREVIOUS_ASK

FID_PREVIOUS_BID

FID_PREVIOUS_QUOTE_DATE

FID_PREVIOUS_CLOSE

FID_PREVIOUS_CLOSE_DATE

FID_PREVIOUS_CUMULATIVE_PRICE

FID_PREVIOUS_CUMULATIVE_VALUE

FID_PREVIOUS_CUMULATIVE_VOLUME

FID_PREVIOUS_CUMULATIVE_VOLUME_DATE

FID_PREVIOUS_NET_CHANGE

FID_PREVIOUS_OPEN

FID_PREVIOUS_PERCENT_CHANGE

FID_PREVIOUS_TRADE_HIGH

FID_PREVIOUS_TRADE_LOW

FID_PREVIOUS_TRADING_DATE

FID_PREVIOUS_OPEN_INTEREST

FID_PREVIOUS_OPEN_INTEREST_DATE

Note that some of these fields are only applicable for certain instrument types.

The Downstream Content Server will then clear down fields so they are ready to receive

values on the next trading day. The fields that get cleared vary according to instrument

type but will typically include all bid, ask, trade and volume fields.

Confidential Page 70 10/6/2008

A4.15 EVENT_TYPE_NEWS

Indicates that the message is a news story.

A4.16 EVENT_TYPE_NEWS_DELETE

Indicates that a news story should be deleted.

A4.17 EVENT_TYPE_PURGE

Indicates that a record is going to be purged from the Downstream Content Server

database. It does not mean that the record has to be deleted on any client systems: It is

simply used as a mechanism to clear out old records from tables where only a limited

history is kept, e.g. a corporate actions table.

A4.18 EVENT_TYPE_ALERT

Indicates that some important property of a record has changed, generally relating to the

trading of the record. For example, messages with this event type are generated when an

instrument enters a restricted trading state.

A4.19 EVENT_TYPE_BBO_DEPTH

Indicates that any of up to 10 levels of Bid or Ask depth fields have changed. For

example FID_BID2, FID_BID2_COUNT, FID_BID2_SIZE, FID_BID2_TIME.

Fields always present:

None.

A4.20 EVENT_TYPE_ORDER

Indicates that the message contains order details.

Fields always present:

None.

A4.21 EVENT_TYPE_HALT_RESUME

Indicates that the instrument has either halted trading or has resumed being traded.

Fields always present:

FID_STATE

Confidential Page 71 10/6/2008

The FID_STATE field indicates whether the instrument has halted or resumed. See

Enumerations.h for details on how to interpret the State field.

A4.22 EVENT_TYPE_IMBALANCE_VOLUME

Indicates that the instrument has an imbalance of order volume.

Fields always present:

FID_IMBALANCE_BUY_VOLUME

FID_IMBALANCE_SELL_VOLUME

FID_IMBALANCE_VOLUME_TIME

A4.23 EVENT_TYPE_PRICE_INDICATION

Indicates that price indications are available for the instrument.

Fields always present:

FID_HIGH_INDICATION_PRICE

FID_LOW_INDICATION_PRICE

FID_INDICATION_PRICE_TIME

A4.24 EVENT_TYPE_REFRESH

Used internally on the upstream content servers to request a refresh of a record to be sent

to all downstream content servers.

Fields always present:

None.

A4.25 EVENT_TYPE_REFRESH_CYCLE

Used internally between the upstream and downstream content servers to indicate that a

complete refresh of the upstream database has been sent.

Fields always present:

None.

A4.26 EVENT_TYPE_OPTION_REFRESH

Used internally by the options feed handler translator devices to get a complete refresh of

an options record to the content servers.

Confidential Page 72 10/6/2008

Fields always present:

None.

A4.27 Other Event Types

The following event types are used for corporate actions and are used by the Downstream

Content Server to identify when adjustments need to be made to its database:

EVENT_TYPE_IPO
EVENT_TYPE_IPO_CANCEL
EVENT_TYPE_DELIST
EVENT_TYPE_DELIST_CANCEL
EVENT_TYPE_DIVIDEND
EVENT_TYPE_DIVIDEND_CANCEL
EVENT_TYPE_DIVIDEND_CORRECTION
EVENT_TYPE_SPLIT
EVENT_TYPE_SPLIT_CANCEL
EVENT_TYPE_SPLIT_CORRECTION
EVENT_TYPE_SYMBOL_CHANGE
EVENT_TYPE_SYMBOL_CHANGE_CANCEL
EVENT_TYPE_OPTION_SYMBOL_CHANGE
EVENT_TYPE_OPTION_SPLIT
EVENT_TYPE_PRICE_ADJUSTMENT
EVENT_TYPE_PRICE_ADJUSTMENT_CANCEL

The following event types are used internally by the system:

EVENT_TYPE_TIME_SERIES_CORRECTION
EVENT_TYPE_TIME_SERIES_DELETE

The following event types are currently unused:

EVENT_TYPE_FORCE_PROCESS_REFRESH
EVENT_TYPE_CACHE_FLUSH

Confidential Page 73 10/6/2008

Appendix 5 - Magazine list

Source Name Magazine Supplied by

ABIX Australasian Business Intelligence ABX Comtex

AFX News Asia AFA Comtex

AFX News Europe AFE Comtex

AFX News UK AFK Comtex

Asia in Focus AIF Comtex

Al-Bawaba ALB Comtex

AM Best AMB Comtex

A&G Information ANG Comtex

All Africa.com ANS Comtex

Associated Press Online APO Comtex

Asia Pulse APU Comtex

Alestron, Inc. (formerly AsiaPort now Sinocast) ASI Comtex

Associated Press WorldStream AWS Comtex

Business News Americas BAM Comtex

BBC Monitoring BBC Comtex

Business Wire BIZ Comtex

FIND -- FedBizOps CBD Comtex

CCN Matthews CCN Comtex

China IT Watch CIT Comtex

Canada NewsWire CNW Comtex

Collegiate Presswire COL Comtex

Canadian Press (AP) CPW Comtex

Christian Science Monitor CSM Comtex

DailyFX DFX Comtex

DMEurope.com DME Comtex

Datamonitor DTM Comtex

Edgar Online -- Glimpse Feed EDG Comtex

Edgar Online 8-K Glimpse EDK Comtex

EFE News EFE Comtex

PRNewswire Europe EUR Comtex

FedNet Government News FDN Comtex

FIND, Inc. -- Fed Register FFR Comtex

FIND, Inc. -- Government Info FGI Comtex

OsterDowJones FWN Comtex

OsterDowJones Select FWS Comtex

HUGIN, AS HUG Comtex

Confidential Page 74 10/6/2008

Street Insider IDR Comtex

Inman News Service INM Comtex

MarketWire (formerly Internet Wire) INW Comtex

IPO Monitor IPM Comtex

Inter Press Services IPS Comtex

Investrend Financial Wire ITR Comtex

JapanCorp.net JCN Comtex

JAGNotes -- Equity Analysis JEA Comtex

JAGNotes -- Unrestricted JGN Comtex

Knobias.com KAS Comtex

Knight Ridder News -- unrestricted KNO Comtex

Knight Ridder News -- restricted KNS Comtex

Knight-Ridder/Tribune Business News -- unrestricted KRO Comtex

Knight-Ridder/Tribune Business News -- restricted KRT Comtex

Kyodo News KYO Comtex

Internet Securities Inc. LTN Comtex

Midnight Trader MID Comtex

M2 - Airline Industry Information MTA Comtex

M2 - 10Meters.com MTM Comtex

M2 - Communications (multiple) MTO Comtex

M2 - DVD News MTV Comtex

Newsbytes News Network NBY Comtex

New World Publishing NWP Comtex

Access Intelligence, LLC Lite PHL Comtex

Access Intelligence, LLC Full PHP Comtex

PrimeZone Media Network PMZ Comtex

CompanyNewsGroup PRL Comtex

PRNewswire PRN Comtex

InterPress Service -- QNA/WAM QNA Comtex

Resource News International RNI Comtex

RosBusinessConsulting ROS Comtex

RWE Australian Business RWE Comtex

SinoCast China Financial Watch SFW Comtex

SinoCast China Transportation Watch TRW Comtex

Trade Signals TSG Comtex

University Wire UNW Comtex

United Press International UPI Comtex

US Newswire USN Comtex

The Deal -- CW Select VCB Comtex

Confidential Page 75 10/6/2008

Vickers Stock Research -- Insider Trading US VKR Comtex

FIND, Inc. - Washington Day Book WDB Comtex

Xinhua -- Economic News XEC Comtex

Xinhua Financial News XFN Comtex

Xinhua News Agency XIN Comtex

Dow Jones News Service DJDN Dow Jones

Confidential Page 76 10/6/2008

Appendix 6 - Non common stock issues

There are several different notations from different exchanges for non common stock

issues. Activ provides a uniform symbology which will be available as alias symbols in

addition to the already existing exchange notations. This uniform symbology is described

below:

Each ticker code can be optionally followed by any of the following three combinations:

<ticker>,<series or class>.<exchange>

<ticker>,<suffix>.<exchange>

<ticker>,<suffix>,<series or class>.<exchange>

Where <suffix> is a two character string representing an issue type other than common

stock and <series or class> is a single character representing the class.

Note that the <suffix> and the <series or class> are preceded by a comma character.

The following suffixes are currently used:

1B First Convertible Bond

1P First Preferred, Same Company

2B Second Convertible Bond

2P Second Preferred, Same Company

3B Third Convertible Bond

3P Third Preferred, Same Company

4P Fourth Preferred, Same Company

AD American Depository Receipts

BD Bonds

BR Bankruptcy

CB Convertible Bond

CC Convertible Called

CL Called

CV Convertible

DB Debentures

DQ Delinquent In Filings

EC Emerging company

FO Foreign

IQ Issuer Qualifications

IR Installment Receipts

LV Limited Voting Shares

MF Mutual Funds

MP Miscellaneous Situations (Such As Certificates Of Preferred When Issued)

MS Miscellaneous

MV Multiple Voting Shares

Confidential Page 77 10/6/2008

NO Notes

NS Notes

NT Notes

NV Non-Voting Shares

NW New

PC Preferred Called

PD Preferred When Distributed

PI Preferred When Issued

PP Partial Paid

PR Preferred Issue

PV Preferred Convertible

RT Rights

RV Restricted Voting Shares

RW Rights When Issued

SB Shares Of Beneficial Interest

SV Subordinate Voting Shares

TE Test symbol

UN Units

US Trading In Us Dollars

VO Voting

WA Warrants Same Company

WD When Distributed

WH Warrants When Issued

WI When Issued

WS Warrants

WW With Warrants Or With Rights

Confidential Page 78 10/6/2008

Appendix 7 – Future Aliases

ACTIV provide a shorthand alias for futures by stripping out the expiration date separator

(“/”) and the immediate zero (“0”) after that if it exists. For example:

A/07J.OC -> A7J.OC

A1/07J.OC -> A17J.OC

AL/10F.CX -> AL10F.CX

ACTIV also manually maintains a “rolling contract” alias determined by our Data

Quality team based on open interest and cumulative volume. For example:

A/*.OC -> A/07J.OC

This mapping will be reviewed periodically and updated to reflect the current most active

contract.

For completeness, ACTIV also provide a shorthand for the above alias by removing the

expiration date separator.

A*.OC -> A/*.OC -> A/07J.OC

This can be seen in the GetMatch example below using the

ActivContentGatewayApiSample:

15

Enter table number <65535>:

Enter symbol: A*

<C>omposite, <P>rimary search type <C>:

Enter relationship id <0>:

Enter field id:

Return all permissioned fields (y/n) <n>:

Enter relationship id:

Subscribe to <N>othing, <A>dds or deletes, <I>nclude Event types,

<E>xclude Event Types, <F>ull <N>:

Ignore alias (y/n) <n>:

Max response blocks in one response <64>:

Enter permission level <255>:

Send request (y/n) <y>:

Returned success using request id 13.

15:55:27 [ApiSample:3] MyContentGatewayClient::OnGetMatchResponse():

Request id [0d 00 00 00] - status success

15:55:27 [ApiSample:3] Subscription cookie 4294967295

15:55:27 [ApiSample:3] **** Response block 1/1 ****

15:55:27 [ApiSample:3] Resolved key A*.OC [600]

15:55:27 [ApiSample:3] Relationship id 0 success

15:55:27 [ApiSample:3] Flags none

15:55:27 [ApiSample:3] Response key A/07J.OC

[16]

15:55:27 [ApiSample:3] Permission id 44

15:55:27 [ApiSample:3] Permission level 0

15:55:27 [ApiSample:3] No field data.

15:55:27 [ApiSample:3] MyContentGatewayClient::OnGetMatchResponse():

Request id [0d 00 00 00] now complete

