General connection information
Sending Data

Data is sent to our servers using post, cookie, or get. Any combination of the three will also work.

When you’re testing things in the browser I suggest that you log in (and out) on our web site. This will set the username and password cookies. Then you get these for free each time you make a request. http://www.trade-ideas.com/AdvancedFeatures.html Login and Logout are the only two options that are implemented on this page. This page is only intended for debugging, and is not intended for live use.
When you’re testing in the browser you can send all other information in the standard get way, i.e. after the question mark in the URL.

For the live data I suggest that you use post exclusively. This has the fewest limits in general. In the past we found that a lot of users go through various HTTP proxy servers, and don’t even know it. Some of these will enforce different rules than others. Some might truncate set of cookies that is too long.

Receiving Data

All data that comes back is in XML. New fields may be added at any time. (That’s why we chose XML in the first place!) You should silently ignore any items that you don’t understand.

You can pretty much ignore the HTTP headers and only look at the body of the response. A valid response should always come with the standard 200 status code.

Response Status
Every valid response should be a valid XML document. Also, some valid responses should have a tag named <STATUS> inside the top level tag. The status tag should have a property named “TI-Success” and the value of that property should be “1”. In general, if you don’t see these things, you should repeat the request. (HTTP can fail for any number of reasons.) Some requests may have additional status to differentiate between permanent errors and temporary errors. Some don’t use the STATUS tag. Read the documentation for each individual call for more details.
Warning: The properties in the status tag look just a little bit different from the properties you find elsewhere. These were originally HTTP headers in an earlier version of the software.

Account Status

In some cases you will see an <ACCOUNT_STATUS> tag inside of the top level tag of the result.

If you do not provide a username or password this tag will not exist. As we’ve discussed the project so far, you will always give us a username and password. We allow people to browse some of our options without logging in, however they get no data.

You might get a message that looks like this: “<ACCOUNT_STATUS STATE="bad username" />”. Other error states include “bad password” and “require payment”. The way we’ve discussed this project, you should never see any of those three options. However, for debugging purposes you might want to display that message.

If the state field is “good” or that field is missing, or that entire tag is missing, then everything is okay.
Sample

Log out, using the link shown at the top of this document. Go to http://etrade.trade-ideas.com/API2/AX_GetConfig.php in your browser. You should see a lot of data that looks similar to the config window in TI Pro, and to http://www.trade-ideas.com/Config.php. At the bottom you should see the status tag.

Log in using @#%#$#% as the username and @#$%@ as the password. Try http://etrade.trade-ideas.com/API2/AX_GetConfig.php again. This time you should see an error message in the account status tag.

Log in using your proper username and password. Try http://etrade.trade-ideas.com/API2/AX_GetConfig.php again. This time the error message in the account status tag should go away. And you should also see a new tag which names all of your symbol lists. You can change your personal symbol lists using TI Pro or the web site, and you will also see some shared symbol lists.

Now try http://etrade.trade-ideas.com/API2/AX_GetConfig.php?WN=This+is+a+test&Sh_NHP=on&Sh_NLP=on&QNLP=222&MinPrice=444 and take a look at the results. Scan for “444” and “222” and “this is a test” in the results.

We’ll look at this page more closely in the next section. But for now you can see how to send and receive data.

Populating the Config Window

The config window is always populated at run time. We can add new alerts and filters to the system at any time. The client only finds out what is available by calling the API.

Config Strings

You will see config strings in various places in our system. Sometimes they look slightly different, but they are all pretty much interchangeable. These describe the users’ settings from the config window. A user can easily copy his setting between our web site, TI Pro, and some of the products which have embedded our control.

Sharing Config Strings
You can see this in TI Pro by selecting “Collaborate…” from the menu. This is a very useful feature that I hope you implement in your software. This allows the user to easily copy the config string out of his application. He can send that to another user by instant messenger or email. That user can use the “Collaborate…” feature to put those settings into one of his windows. We use that a lot for customer support. It’s also useful in development.
Sometimes the config string will be a complete URL, like http://www.trade-ideas.com/View.php?O=7FF9FFFFFFFFFFFFFFFFFFF3FFFFFFFFFF0_15_0&WN=High+Speed+Test. In that case you should ignore everything up to and including the question mark. The parts after that are the parts that you are concerned with. The parts of our software that are available to the end user usually allow the user to supply a config string with our without the URL part of the config string. If we see the URL, the client software gets rid of it before sending the rest of the config string to the server. In this case, if you put the above string into the collaborate window, TI Pro would only send “O=7FF9FFFFFFFFFFFFFFFFFFF3FFFFFFFFFF0_15_0&WN=High+Speed+Test” to the server. The user could have entered either of these strings into the collaborate window and gotten the same results.
Interpreting Config Strings

You will see instructions below for creating a config string. Sometimes the server will give you a config string in a slightly different format. Don’t be concerned with the internal details of what the config string looks like. Don’t try to parse it yourself. Instead, you can use the API call described in this section. It will take a config string as an optional input. It will include the user’s settings as part of its output.

Creating Config Strings
There are multiple formats for the config string. The only one you need to know is standard URL form encoding. This is the exact same format that the web based product uses. You could send data to the API directly from a web based form. Your software should encoded the fields exactly the same way as the web browser would do it.
If you are reading from the GUI you can encode each field one at a time. For example, if the user types “444” into the MinPrice field, then you should add “&MinPrice=444” to the end of the URL or the post data.. If the user types “High Speed Test” into the window name field, you should add “&WN=High+Speed+Test” or “&WN=High%20Speed%20Test”. If the user checks a checkbox you will add something like “&NHP=on”. If the user does not check the checkbox you don’t add anything. (The field names are described below.)

A config string is just a collection of properly encoded fields separated by ampersands. If you want to use a complete config string, you would usually just append the config string to the end of the URL or the post data. (You might also need to append an ampersand or a question mark.) For example, if the user set the window’s config information to “O=7FF9FFFFFFFFFFFFFFFFFFF3FFFFFFFFFF0_15_0&WN=High+Speed+Test” then you would use http://etrade.trade-ideas.com/API2/AX_GetConfig.php?O=7FF9FFFFFFFFFFFFFFFFFFF3FFFFFFFFFF0_15_0&WN=High+Speed+Test to access the config window data.
Inputs

The client should provide the username, password, and a valid config string. The config string describes the initial settings for the config window. If you do not provide this string, the config window would initially be empty.
Output

There will be a <CONFIG> tag inside the top level tag. This contains all data required to populate the config window.
Window Name

The config tag will contain a WINDOW_NAME property. (If this, or any property, is missing then you should treat it as the empty string.) The window name is not used internally by the server. It is just copied back to the client. The client should display this for the user.
After the user hits “OK” the window name should be returned to the server with the field name “WN”.

Alerts

Inside of the CONFIG_WINDOW tag is an ALERT_TYPES tag. Inside of this tag are several more tags, one for each type of alert that we provide. The order of these tags is important. They are grouped so that similar alerts are close together. And they appear in the same order here as in the on-line help.
Here are some samples:

 <NHP DESCRIPTION="New high" SELECTED="1" QUALITY_NAME="Days, i.e. 52 week high = 365" />

 <NLP DESCRIPTION="New low" SELECTED="1" QUALITY_VALUE="222" QUALITY_NAME="Days, i.e. 52 week low = 365" />

 <NHA DESCRIPTION="New high ask" QUALITY_NAME="Shares, minimum ask size" />

 <CMU DESCRIPTION="Check mark" />

The name of the tag (“CMU” for example) is our internal description of the alert type. This is part of the response. For example if the user clicks the check box you would add Sh_CMU=on to the config string. (If the box is not checked, you would completely omit this name-value pair.) If you wanted to display the icon for this alert, you can find it at http://static.trade-ideas.com/Alerts/CMU.gif. If you choose to use our on-line help, you can refer people to http://www.trade-ideas.com/ProductHelp.html#CMU.
Each alert will have a DESCRIPTION property. This is a user friendly description of the alert. You should display that on the config window next to the alert.

Some alerts may have SELECTED=“1” as a property. This means that the check box should initially be checked. Otherwise it should initially be unchecked. That information comes from the config string.
Some alerts have a QUALITY_NAME field. For these alerts you should display an additional text entry box. The value of this field is a user friendly description of that field. If the user fills in that text box, then you should send that value back as part of the new config string. Use “Q” followed by the alert name to return this data. For example QNHP would be the quality associated with the NHP alert.
QUALITY_VALUE is the initial value to put into that field.

Window Specific Filters

Inside of the CONFIG_WINDOW tag is a WINDOW_SPECIFIC_FILTERS tag. This contains additional tags, one for each filter. The order is important. Similar filters are near each other in the list. The help lists the filters in the same order as this list.

Here is a sample of a filter: “<MinPrice TYPE="D" DESCRIPTION="Min Price" UNITS="Dollars" VALUE="444" />”.

The name of the tag is the internal name that we use for the filter. In this example it is MinPrice. If you want to display an icon for this filter, you would get the image from http://static.trade-ideas.com/Filters/MinPrice.gif. When the user fills in a value for this field, you should use this as the field name to send the result back to the server.
The TYPE attribute says describes the type of input. We only support one type of filter at this time. When the type is D you should offer the user a standard text entry field. If the type is anything else you should ignore the field.

Long ago we supported Boolean fields, but I can’t imagine that we’d bring those back.

The DESCRIPTION and UNITS attributes are user friendly descriptions of the field. You can see the config window on TI Pro and the web to see how these can be displayed.

Exchanges

Inside of the CONFIG_WINDOW tag is an EXCHANGES tag. This contains additional tags, one for each exchange.

Here is an example: “<X_NYSE DESCRIPTION="New York Stock Exchange (NYSE)" SELECTED="1" />”. Here is another: “<X_AMEX DESCRIPTION="American Stock Exchange (AMEX)" />”

The name of the tag is used to return the result back to the server. For example, if the user selected the AMEX check box, you should add X_AMEX=on to the config string.

The DESCRIPTION attribute contains a user friendly description of the exchange.
The tag might include “SELECTED="1"”. This means that the check box should initially be checked.

These should be check boxes.

Symbol Lists

Inside of the CONFIG_WINDOW tag is a SYMBOL_LISTS tag. This contains additional tags, one for each symbol list.

Examples: “<SL_0_1 NAME="Set DELL & MSFT" SELECTED="1" />”, “<SL_0_2 NAME="Email" />”. Note: I’m getting these from Microsoft Internet Explorer. That’s why you see the formatting. If you look at the raw data the first one would like “<SL_0_1 NAME="Set DELL & MSFT" SELECTED="1" />”. Notice the standard XML quoting of the ampersand.

The name of the tag is the same name that you should use when you return the result to the server. If the user selected the second list we would add SL_0_2=on to the config string.

The NAME attribute is a user friendly description of the symbol list. This is typically chosen by the user.
These should be check boxes.

In addition to the individual lists, you need to present the user with a choice of mode. The mode is stored in a field called “EntireUniverse”. (We use that name for historical reasons. This is part of the way that we maintain backward compatibility.)

The value “1” means to ignore the symbol lists and to show all symbols.

The empty string means to show exactly the symbols found in the selected symbol lists.

The value “2” means to show exactly the symbols which are not found in the selected symbol lists.

The value “3” means to ignore the symbol lists and instead look for alerts matching a single symbol. That symbol should be included in another name-value pair. Use “single_symbol” for that field.
Next Step

If the user hits the okay button you will probably accumulate the pieces of the config string, and send the result to the server using the Set Config Info API call. You will have a lot of different fields. Each one is a normal name/value pair, where the pairs are separate by an ampersand, etc.

If a field is blank you can omit it. However, we typically don’t. Instead, we let the server take care of removing unnecessary items. That’s what “short form” means.

We do this in part for compatibility reasons. If we add (or even delete) a field between the time you create your config window and when you submit the result, there will not be a problem. We will accept the fields that we both agree on. We will ignore the extra. And we will use defaults for what’s missing.
Many of these fields accept a number as an input. The server takes care of validating these numbers. We always expect numbers to be presented in the US/English way. “1000.500” means one thousand and one half. “1,000.50” is also acceptable and means the same thing.

You can see this in action by going to the web site. http://www.trade-ideas.com/Config.php The formats generated and accepted by the web software are identical to the formats generated and accepted by the API. In fact, the formats were chosen in part to make them easy to implement in an HTML form. We had more flexibility with the API than the web site, so we made the API match what the web site.

I created a variation of this web page just for you. Please see http://etrade.trade-ideas.com/Config.php. This is similar to normal config page, but it displays the original form of all of the name value pairs. (Normally both TI Pro and the web will hide that from you and only show you the short form.) This is exactly what you should be generating from your configuration window. This is the string you should be sending to the to Set Config Info command.
For the list of individual fields, see the “Output” section, above. For specific examples, you can search for “Sh_CMU”, “QNHP”, and “MinPrice”.

Set Config Info

When you create a new window, you can use the Set Config Info API call to say what data to display in the window. You can call this again with the same window id to change the data displayed in the window. You can call this again with a different window id to create multiple windows.
Use http://etrade.trade-ideas.com/API2/AX_SCI.php to access this function.
Inputs

username and password have their normal meanings.

You need to add the config string to the inputs. See the section on config strings, above, for information on how to generate this string.

seq is a cookie that comes from another API call. This identifies the session. If a user logs in on 2 different computers, the second session will provide data and the first session will get cut off automatically.

window is a cookie that is generated by the client. When we provide results, they will be grouped by window, and each group will have a window id associated with it. window is a string of 1 to 8 characters. This is long enough to store a standard integer in hex, but it could be anything.
Output
<API>

 <STATUS TI-Short-Form="O=3_8_0&QNLP=222&MinPrice=444&WN=This+is+a+test&SL=1" WINDOW_NAME="This is a test" />

</API>
On success the window will return a value for the TI-Short-Form attribute. If that attribute is missing or blank, there is a problem and you should try again.

The short form is another way of representing the config string. In the future you can use the original config string or you can use the one that is returned in this call. Typically the one returned here is shorter than the original, so we use it. This is useful if you want to save the user’s configuration and restore it later.

The WINDOW_NAME attribute is the name of the window. This comes from the configuration window. Typically this is the title that will appear in window’s title bar.
Remove Config Info
When you close a window, call this to stop requesting the data for that window. This API function is available at http://etrade.trade-ideas.com/API2/AX_RCI.php.
Inputs

username and password have their normal meanings.

seq is a cookie that comes from another API call. This identifies the session. If a user logs in on 2 different computers, you don’t have to worry about the first one deleting windows that the second one was using. The first one will have an old cookie and will be silently ignored.

window is a cookie that is generated by the client. This should match the window you used in a previous call to SetConfigInfo. If the window does not exist the call will do nothing.

Output

There is no meaningful output from this function, not even the standard status message. If you get data for a window that you were not expecting, call this function again.
Get Alerts
Use http://etrade.trade-ideas.com/API2/AX_GetA.php to retrieve alerts from the server. After each call wait 1 second and call it again.
Inputs

username and password have their normal meanings.

seq is the session id. To start a new session, do not provide this field. To continue getting data, provide the value that came when you started the session. This is a pretty standard way to prevent multiple logins. If the user leaves his software running at home and then starts it at the office, that will disconnect the session at home so he can work at the office. If he goes back home he can restart the software to get a new session. Under no circumstances you the software automatically start a new session. This should always be based on some user action, like starting the software.

id is another cookie. When starting a new session, do not provide this value. Each time you call this API function you will get a new value for the id. Provide the most recent value to the next call. If a message gets lost or garbled, this id will ensure that the user doesn’t miss anything. id and seq may look like integers, but they are only cookies and should be stored as strings.

mru allows you to request a list of the user’s recent settings. Set this value to 1 if you want those settings. Do not provide this value at all if you do not need those settings.

Output
If the TI-Disconnect attribute of the STATUS tag inside the top level tag is “1” then you should stop requesting data. This typically means that your session has ended. See the discussion of sessions in the previous section.

If there is an error there will typically be a user friendly error message in the TI-ErrorMsg attribute of the STATUS tag.

The ACCOUNT_STATUS tag may include a more machine readable version of the error message. It shouldn’t matter for what you are doing.

Sometimes there will be a TI-New-Seq attribute in the STATUS tag. If you see this you should change the value of seq in future calls. If this does not exist, you should continue to use the previous value. Typically this should only happen when you request a new session, but to be safe you should always look for it.

On success there will be a TI-LastId attribute in the STATUS tag. This is the value you should send in the id field in the next call to this API function. If you do not see this and you do not see TI-Disconnect, then there is an error. Next time use the same id value as last time.

The DATA tag in the top level tag includes all of the alerts you need to display. There is a tag within the DATA tag for each window. The window tag with have the name WINDOW. It will have an attribute named ID. The ID attribute is the cookie you provided when you created the window. The window tag will have tags inside of it for each alert. The alert tags will have attributes for each of the columns. Some attributes will be missing for some alerts, and these typically correspond to blank spots on the table. Note: The most recent alert will be the first one in the list; you may want to reverse the order before displaying the alerts.
If you requested the mru list, you will see a tag named VIEW_MRU inside the top level tag. This tag will contain tags for each of the recently viewed settings. Each of those tags will have the name MRU. TIME attribute of the MRU tag shows the last time the user started requesting data for this setting. The NAME attribute is the name that the user assigned to the window. The SETTINGS tag is a valid config string that you can use in a call to AX_SCI or AX_GetConfig.
Alert Types

Use http://etrade.trade-ideas.com/API2/AX_Types.php to see a list of alert types available on our system. This may be useful if you want to preload the icons. This offers no new functionality, as you can get this same information from http://etrade.trade-ideas.com/API2/AX_GetConfig.php, however it might be easier to use in some cases.

Note: New alert types can be added at any time. In particular, each time you call AX_GetConfig.php you might get a different set of alerts.

Inputs

None.

Output

Obvious. Try it. There is no status attribute.
Delete All Symbol Lists

Use http://etrade.trade-ideas.com/API2/AX_DeleteAllLists.php to delete any and all personal symbol lists associated with a user id.
The recommended way to use symbol lists is as follows. Whenever you start a new session, you also call this function to reset all symbol lists. Then you copy any relevant symbol lists to our servers using the functions described below.

This system works well when Trade-Ideas’ symbol lists are a copy of lists already available on the client. For example, if Trade-Ideas will get a copy of the user’s portfolio and other windows, then the client software contains the primary copy of this data, and it should give a copy of this data to Trade-Ideas when a new session starts. The client should not rely on the current state of the lists between one session and the next.
This function, and the others related to symbol lists, are not directly tied to the sessions described above. These are only recommendations for how to use this API.

Inputs

username and password are used in the standard way.

Output

On success the <STATUS> tag (inside the top level tag) will have a property named “TI-Success” set to “1”.

There may be additional information present in the case of an error. These messages are typically aimed at developers, not end users. It may be worthwhile to manually review the output if there are problems in development. However there is nothing that should be displayed to a user or otherwise used by the software.

If you do not see the success flag set to “1”, something failed, and the client should retry the operation.

If no retry should be performed, for example if the username or password is incorrect, the server will return with the success flag set to “1”. This looks just like success. Use AX_GetA.php if you need more details about this type of error.
List of Symbol Lists

Use http://etrade.trade-ideas.com/API2/AX_ListOfLists.php to see the current state of a user’s symbol list.
This is an alternative to the AX_DeleteAllLists function call. When you first start you can delete what’s there, or you can ask the server to tell you what’s there. We use this in TI Pro, but it does not seem like the right approach for e*trade. I strongly recommend the AX_DeleteAllLists approach.

Inputs

username and password are used in the standard way.

Output

This call does not set the TI-Success property.

Sample

<API>

 <LISTS>
 <LIST ID="1" NAME="Set DELL & MSFT" />
 <LIST ID="2" NAME="Email" />
 </LISTS>
</API>
See below for the way to use the id and name of each list.

Update Symbol List
A call to http://etrade.trade-ideas.com/API2/AX_UpdateList.php will allow you to alter a symbol list.
This call will also allow you to read the contents of a symbol list from Trade-Ideas. As described in the section on AX_ListOfLists, this feature probably does not apply to e*trade.

Inputs
username and password are used in the standard way.

add allows you to add one or more symbols to a list. To add more than one symbol, separate the symbols with a carriage return followed by a line feed. (Using a CRLF to separate items allows you to use a <TEXTAREA> tag in an HTML document to fill in this value. This can be useful in development.) This item is optional. If you do not include this item, nothing will be added to the symbol list. If a symbol was already in the list, it is silently ignored.
delete allows you to delete one or more symbols from a list. To delete more than one symbol, separate the symbols with a CRLF. This item is optional. If a symbol was not in the symbol list to begin with, that symbol is silently ignored. It is safe to add some symbols and delete others in the same request.
delete_all allows you to delete all symbols from a list at once, without enumerating them. Use the value “1” if you want to delete all symbols from this list. Do not add this item at all if you do not want this functionality. It is safe to use delete_all and add in the same request. The delete_all command will be performed before the add command.

delete_list allows you to completely remove the list from the server. This deletes all of the symbols from the list, like delete_all. However, it also removes the list name from the database. After calling delete_list the user will not see the list in the config window any more. Use the value “1” if you want to delete the list. Do not add this item at all if you do not want this functionality. It does not make sense to mix delete_list with any other commands.

If you set request_list to “1” the server will respond with the contents of the list. Do not add this item all if you do not want this functionality.
id is where you specify which list to change. Each request can only change one list at a time. See the documentation on the ActiveX control for more information about list ids.
list_name is the new name for the list. This is what appears in the config window. This item is not optional. If you do not specify a list name, it is the same as setting the list name to the empty string.
Output
Status

If the STATUS tag has a TI-ErrorNoRetry attribute then there was a permanent error. You should not retry automatically. The value in this tag will be a user friendly error message, but it is usually aimed at a developer, not an end user. An example of this is shown below.

<API>

 <STATUS TI-ErrorNoRetry="Invalid list id number!" />

</API>

On success you will get the standard TI-Status=“1” attribute. If you do not see TI-Status or TI-ErrorNoRetry then you should assume that the operation failed and you should try again.
Symbols

If requested, the server will return the contents of the list. Sample input: http://etrade.trade-ideas.com/API2/AX_UpdateList.php?id=2&list_name=Email&request_list=1. Sample output:
<API>

 <SYMBOLS>

 <SYMBOL NAME="CSCO" />

 <SYMBOL NAME="DELL" />

 <SYMBOL NAME="IBM" />

 <SYMBOL NAME="KO" />

 <SYMBOL NAME="MSFT" />

 <SYMBOL NAME="ORCL" />

 <SYMBOL NAME="QCOM" />

 <SYMBOL NAME="T" />

 </SYMBOLS>

 <STATUS TI-Success="1" />

</API>

Usage

Look at the ActiveX API documentation to see how this is typically used. The API call described in this section is used to implement the symbol list functionality in the ActiveX library.
Each call to this function executes atomically. In particular, if use the delete_all command and the add command in the same call, there will never be a time when the list is empty.

I recommend that you never have more than one outstanding request of this type per symbol list. That way you can be sure that the add and delete messages are processed in the correct order. That is how the ActiveX control uses this functionality.

Notice that there is more than one way to send data to the server. It is easy to start by deleting everything and adding exactly what you want in the list. After that, you should send only deltas to the list. That’s far more efficient than resending the entire list each time there is a small change.

Combining Requests

Notice that we make it easy to combine multiple requests into one message. Here’s an example.

First, you start fresh. You send the request to delete all lists. You wait for confirmation. Then you send one update symbol lists request. You use the “add” command to all of the symbols at once. For example “add=DELL%0D%0AMSFT%0D%0AORCL” will create a list containing DELL, MSFT, and ORCL.

After this you wait for confirmation again before sending another message. You don’t want the messages to get out of order. If someone said to add a stock, then quickly said to delete it, and those two messages got out of order, you’d be in trouble.

Now imagine that the user wants to add INTC. We send another request with “add=INTC” and send it.

Now imagine that the user wants to delete DELL, but the previous request has not been confirmed yet. So we create a new request but we don’t send it yet.

Now the user wants to add T and delete MSFT. We could create two new requests and add them to the client’s internal queue. But that would be inefficient. Instead we combine these new requests with the one that we are already holding. Now we want to delete DELL and MSFT and add T.
If the previous request is confirmed now, then we could send the new request. We would send “add=T&delete=DELL%0D%0AMSFT”.

For the sake of example, let’s say that the previous API request has not been confirmed yet, and the user sends more requests. The user wants to add DELL again. In this case we move DELL from the list of things to delete to the list of things to add. (If you put DELL in both lists, that would be an error. The results are undefined in that case.) Currently we are planning to add T and DELL and we want to remove MSFT. If the pending request is finally confirmed now, then we could send “add=T%0D%0ADELL&delete=MSFT”.
For the sake of example, now let’s assume that the pending request failed. Maybe it timed out, or maybe it responded with an error code. In this case you would have to resend the request. But before doing that, you could combine the new requests with the request that you already tried to send. Again you have to be careful about the order of the two requests.

Sending an Entire List at Once
There are two common ways to send updates. Sometimes you send the entire list at once. Sometimes you send each individual update. For example, if a person has a large portfolio, and buys DELL, you would want to send us an update with just “add=DELL”, as in the previous section. You would not want to send the entire portfolio.

However, if a person is loading an entire symbol list at once, from a file, you might not want to send us the deltas. Instead, you would want to send us just the new list. In that case you would add “delete_all=1” to the request. You would all use the “add” field in the same request. We always perform the delete_all before the add. There is no need to have a delete and a delete_all in the same request.
Note: You always want to combine “delete_all” and “add” in one request. It’s not just for efficiency. But we also satisfy each request atomically. Imagine a person reloads a window from a file. Imagine he was watching DELL before and after he loaded the file. If you broke this into two separate requests, it’s possible that he would receive data after we emptied the list but before we added the new symbols. He would miss any alerts during that period.
If you get multiple requests from the user, you can combine delete_all with add and delete. As before, order is very important. If the user requests a delete_all, that gets rid of any add or delete requests. New stocks can be added to the “add” list. When you delete a stock, you only have to remove it from the “add” list. You don’t have to add it to the “delete” list because that would be redundant.
History

History is not yet available in the HTTP/XML API. This will be added. Based on similar code, it might look a lot like AX_GetA. Each time you send a request, the result will come back with some data and a cookie to help us continue the request on the next call. Each call is likely to take several seconds to execute, as opposed to AX_GetA which returns very quickly.

OddsMaker

The OddsMaker is not yet available in the HTTP/XML API. This will be added. Based on similar code, this is likely to include one HTTP call which lasts for a long time. It will give limited status while it is running, as seen in TI Pro. The intermediate and final results will all be in XML with no formatting. Individual messages will be separated by a CRLF sequence.
